

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME									
CENTRE NUMBER					CANDIDATE NUMBER				
MATHEMATICS	S							97	09/12
Paper 1 Pure M	1athemat	ics 1 (P1)				Febr	uary/l	March	2019
						1	hour	45 mi	nutes
Candidates ans	wer on th	e Question	Paper.						
Additional Mater	rials:	List of Forr	mulae (MF9	9)					

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of **19** printed pages and **1** blank page.

BLANK PAGE

© UCLES 2019 9709/12/F/M/19

 	•••••			•••••	•••••
 	•••••				
 		•••••			
 	••••••	•••••••	••••••	••••••	•••••
 	•••••				
 ,					
	•••••	••••••	••••••	••••••	•••••
 	•••••	•••••		••••••	
 	•••••			•••••	•••••
 	•••••	••••••	•••••	•••••	•••••
 	•••••				
 		•••••			
 	••••••	••••••	••••••	•••••••••••	•••••

$f'(x) = kx^2 - 2x$, where k is a constant. Find the value of k.	[5
	••••••
	•••••
	•••••

YABX is perpendicular to CD , and the arc CYD is part of a circle with centre B and radius 8 cm. It the total area of the region enclosed by the two arcs.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	••••
	•••••
	••••
	•••••

	6	
4	A curve has equation $y = (2x - 1)^{-1} + 2x$.	
	(i) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	[3]

ne natule 0	f each station	onary poin	ıt.						
		•••••		•••••					•••••
									•••••
		•••••		•••••					•••••
•••••		•••••		•••••		•••••		•••••	•••••
				•••••					•••••
•••••		•••••		•••••		•••••		•••••	
		•••••		••••					
•••••									
•••••		•••••							
•••••		•••••	••••••	•••••	••••••	•••••	••••••	•••••	• • • • • • •
		•••••		•	••••••	•••••	•••••••••••		•••••
•••••		••••••	, 	•••••	••••••	••••••	••••••	•••••	•••••
				• • • • • • • • • • • • • • • • • • • •	•••••	•••••			•••••
•••••		•••••	••••••	•••••	••••••	••••••	••••••	•••••	•••••
									•••••
									•••••
				•••••					•••••
•••••		•••••		•••••		•••••		•••••	•••••
•••••		•••••		• • • • • • • • • • • • • • • • • • • •					•••••
									•••••

5 Two vectors, **u** and **v**, are such that

$$\mathbf{u} = \begin{pmatrix} q \\ 2 \\ 6 \end{pmatrix} \quad \text{and} \quad \mathbf{v} = \begin{pmatrix} 8 \\ q - 1 \\ q^2 - 7 \end{pmatrix},$$

where q is a constant.

(i)	Find the values of q for which \mathbf{u} is perpendicular to \mathbf{v} .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

© UCLES 2019 9709/12/F/M/19

Find the angle between \mathbf{u} and \mathbf{v} when $q = 0$.	I

•••••		•••••	•	••••••	••••••	•	•••••
•••••			•••••	•••••	•••••		
			•••••	•••••	•••••		
						• • • • • • • • • • • • • • • • • • • •	
							•••••
•••••				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	
••••••			•				
					•••••		
•••••		••••••	••••••	••••••	••••••	•	•••••
			•••••	•••••	•••••		
		••••••	•••••	••••••	••••••	•	••••••
				•••••			
••••••••••	••••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••			••••••	••••••	••••••	•••••	•••••
				•••••		•••••	•••••

p and hence find the values of n and p .	[5

	Solve the equation $3\sin^2 2\theta + 8\cos 2\theta = 0$ for 0°	

(b)

The diagram shows part of the graph of $y = a + \tan bx$, where x is measured in radians and a and b are constants. The curve intersects the x -axis at $\left(-\frac{1}{6}\pi, 0\right)$ and the y -axis at $(0, \sqrt{3})$. Find the values of a and b .

(i)]	Express $x^2 - 4x + 7$ in the form $(x + a)^2 + b$.	
•		
The f	Function f is defined by $f(x) = x^2 - 4x + 7$ for $x < k$, where k is a constant.	
(ii) S	State the largest value of k for which f is a decreasing function.	
The v	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	
	value of k is now given to be 1.	

© UCLES 2019 9709/12/F/M/19

)	The function g is defined by $g(x) = \frac{2}{x-1}$ for $x > 1$. Find an expression for $gf(x)$ and state the range of gf.

9

The diagram shows part of the curve with equation $y = \sqrt{(x^3 + x^2)}$. The shaded region is bounded by the curve, the *x*-axis and the line x = 3.

(i)	Find, showing all necessary working, the volume obtained when the shaded region is rotated through 360° about the <i>x</i> -axis. [4]

normal to the curve at P crosses th	e y-axis.			[6
				 ••••
				 ••••
	••••••	•••••	•••••	 ••••
	•••••			 ••••
				 ••••
				 ••••
				••••
	••••••	••••••		 ••••
	•••••		•••••	 ••••
				 ••••
				 ••••

10

The diagram shows the curve with equation $y = 4x^{\frac{1}{2}}$.

(i)	The straight line with equation $y = x + 3$ intersects the curve at points A and B. Find the length of AB.

(ii)	The tangent to the curve at a point T is parallel to AB . Find the coordinates of T .	[3]
		•••••
		•••••
(iii)	Find the coordinates of the point of intersection of the normal to the curve at T with	the line AB .
		[3]
		•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.