

Cambridge Assessment International Education

Cambridge International Advanced Level

		CANDIDATE NUMBER	
6			9709/33
/lathemat	ics 3 (P3)	00	ctober/November 2019
			1 hour 45 minutes
wer on th	ne Question Paper.		
	/lathemat	Mathematics 3 (P3) wer on the Question Paper.	NUMBER Number Number Number Number

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

This document consists of **19** printed pages and **1** blank page.

BLANK PAGE

[4	e inequality $2 x + 2 > 3x - 1 $.

	•••••				•••••		•••••			••••
	•••••	•••••			•••••		•••••			••••
	•••••					•••••	•••••			
•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••		
	••••						••••			
•••••	•••••	•••••	•••••	••••••	•••••	••••••	•••••	••••••		••••
••••••	•	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•	••••••		••••
•••••	••••	•••••	•••••	•••••	•••••	•••••	•	••••••		••••
•••••	•••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••

3 decimal ₁	places.							ır answer corı
		•••••						
		•••••						
		•••••						
		••••						
•••••	•••••	•	•			•	••••••	
••••••	••••	•••••	•••••••	•••••	•	••••••	•••••	••••••
••••••			•••••••••••••••••••••••••••••••••••••••			••••••		
••••••		•••••						
••••••		•••••	••••••	••••••		••••••		
				,				
		•••••						
		•••••						

ι	$an^4x - 12\tan^2x + 3 = 0.$
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

•••••
•••••
•••••

(i) By sketching a suitable pair of graphs, show that the equation $ln(x + 2) = 4e^{-x}$ has exactly one

Show by calc	ulation that this r	oot lies betweer	$\mathbf{a} x = 1 \text{ and } x = 1$	1.5.	
Show by calcu	ulation that this r	oot lies betweer	x = 1 and x = 1	1.5.	
Show by calci	ulation that this r	oot lies between	x = 1 and x = 1	1.5.	
Show by calc	ulation that this 1	oot lies between	x = 1 and x = 1	1.5.	
		oot lies between	a x = 1 and x = 1	1.5.	
Show by calcu		oot lies between	x = 1 and x = 1	1.5.	
		oot lies betweer	x = 1 and x = 1	1.5.	
			x = 1 and x = 1	1.5.	

i)) Use the iterative formula $x_{n+1} = \ln \left(\frac{1}{\ln x} \right)$ Give the result of each iteration to 4 d	$(x_n + 2)$ ecimal place	to determine aces.	the root corr	ect to 2 decima	al places [3]
		•••••				•••••
						•••••
		•••••				•••••
		••••••	•••••			
		•••••				••••
		••••••				•••••
		••••••				•••••
		•••••				•••••

6	Throughout this	question 1	the use of	f a c	calculator	is not	permitted.
---	-----------------	------------	------------	-------	------------	--------	------------

The complex number with modulus 1 and argument $\frac{1}{3}\pi$ is denoted by w.

(i) Express w in the form $x + iy$, where x and y are real and exact.	[1]
	•••••
The complex number $1 + 2i$ is denoted by u . The complex number v is such that $ v = 1$	2 u and

(ii) Sketch an Argand diagram showing the points representing u and v. [2]

© UCLES 2019 9709/33/O/N/19

 $\arg v = \arg u + \frac{1}{3}\pi.$

where <i>a</i> an		_ mid onuc	: ==						
•••••		••••••	•••••	••••••	•••••	•••••	••••••	•••••	••••
	•••••	•••••	•••••	••••••	•••••		•••••	•••••	•••••
									••••
									••••
•••••									
•••••	•••••	••••••	•••••	••••••	••••••	••••••	••••••	••••••	•••••
•••••		•••••	•••••	•••••	•••••	••••••	••••••	•••••	••••
				•••••					••••
•••••	•••••	••••••	••••••	••••••	••••••	••••••	•••••••	••••••	••••
		•••••	•••••	••••••	••••••	••••••	•••••	•••••	••••
				••••••	•••••	•••••		•••••	••••
•••••		•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	••••
•••••									
								••••••	
• • • • • • • • • • • • • • • • • • • •			•••••	••••••	•••••	•••••	••••••	••••••	••••

The plane m has equation x + 4y - 8z = 2. The plane n is parallel to m and passes through the point

(i) Find the equation of n , giving your answer in the form $ax + by + cz = d$.	
ii) Calculate the perpendicular distance between m and n .	
ii) Calculate the perpendicular distance between <i>m</i> and <i>n</i> .	
ii) Calculate the perpendicular distance between <i>m</i> and <i>n</i> .	
ii) Calculate the perpendicular distance between <i>m</i> and <i>n</i> .	
ii) Calculate the perpendicular distance between <i>m</i> and <i>n</i> .	
ii) Calculate the perpendicular distance between <i>m</i> and <i>n</i> .	
ii) Calculate the perpendicular distance between m and n.	

-	d a vector equation					
			••••••	•••••		•••••
						••••
••••••	••••••			••••••	••••••	•••••
••••••			•••••	•••••		••••
						••••
•••••				•••••		••••
••••••	•••••			••••••	•••••	•••••
••••••	•••••	•••••	••••••	•••••	•••••	••••
						••••
						••••
				•••••		••••
				•••••		
••••••	••••••	•••••	••••••	••••••••••	••••••	••••
						•••••
•••••				•••••		•••••
						•••••

The diagram shows the graph of $y = \sec x$ for $0 \le x < \frac{1}{2}\pi$.

(i)	Use the trapezium rule with 2 intervals to estimate the value of correct to 2 decimal places.	$\int_{0}^{1.2} \sec x dx, \text{ giving your answer}$ [3]
(ii)	Explain, with reference to the diagram, whether the trapezium underestimate of the true value of the integral in part (i).	rule gives an overestimate or an [1]

differe	ntiating	$\frac{1}{\cos x}$,	find the	e x-cooi	rdinate	of P , gi	ving yo	our answe	er correc	t to 3 de	cimal pl
•••••				••••••	•••••		•••••	••••••	•••••	•••••	
••••••	•••••		•••••	•••••	•••••	•••••	•••••		••••••	••••••	
	•••••			•••••					••••••		
•••••	•••••		•••••	••••••	•••••	•••••	••••••			•••••	
••••••	•••••		•••••	••••••	•••••	•••••	••••••		••••••	•••••	
••••••	•••••		•••••	•••••			••••••		•••••	•••••	
•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••
•••••	•••••		•••••	•••••	•••••	•••••	•••••		•••••	••••••	••••••
•••••	•••••		•••••	••••••	•••••	•••••	•••••		•••••	•••••	
	•••••		•••••	•••••		•••••	•••••			•••••	
	•••••			•••••	•••••			•••••	•••••	••••••	
	•••••										
	•••••		•••••				•••••				
	•••••										
	•••••										
	•••••			•••••							
	•••••										
	•••••										
	•••••										
	•••••										

g part	ial frac	rtions	~ ~ !						1							
		cions,	sorve	the o	liffere	ential	equa	ition,	obta	ining	an e	kpres	sion f	or <i>x</i> 11	n term	ns of <i>t</i> . [9]
						•••••							•••••			
													•••••			
													•••••			
						•••••			•••••				•••••			
						•••••			•••••				•••••			
						•••••							•••••			
			•••••			•••••	•••••	•••••	•••••		•••••		•••••			
								•••••	•••••				•••••			
					•••••	•••••			•••••				•••••	•••••		
•••••			•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••		
•••••			•••••	•••••	•••••			•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	
•••••			•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••		•••••
•••••	•••••		•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••		•••••	•••••		•••••
•••••			••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
•••••			•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••		•••••	•••••		••••••
•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		••••••
•••••			•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••
•••••			••••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••

		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
(ii)	State what happens to the value of x when t becomes large.	1]
		_
		•••
		•••
		•••

The diagram shows the graph of $y = e^{\cos x} \sin^3 x$ for $0 \le x \le \pi$, and its maximum point M. The shaded region R is bounded by the curve and the x-axis.

)	Find the x-coordinate of M. Show all necessary working and give your answer correct to 2 decimal places. [5]

By first using the substitution $u = \cos x$, find the exact value of the area of R .	

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.