Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level | CANDIDATE
NAME | | | | |-------------------|------------------------------|---------------------|----------| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | MATHEMATICS | | | 9709/41 | | Paper 4 Mechai | nics 1 (M1) | October/Novem | ber 2019 | | | | 1 hour 15 | minutes | | Candidates answ | wer on the Question Paper. | | | | Additional Mater | ials: List of Formulae (MF9) | | | #### **READ THESE INSTRUCTIONS FIRST** Write your centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown. Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. Where a numerical value for the acceleration due to gravity is needed, use 10 m s⁻². The use of an electronic calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 50. | crane is a constar | , | | | | | |--------------------|--------|--------|-------|---|---| | | | | |
 | | | | | ••••• | |
 | | | | | ••••• | |
••••• | | | | | ••••• | |
••••• | | | | | | |
••••• | ••••• | | | | | |
 | •••• | | | | | | | | | | | | |
 | | | | | | |
••••• | | | | | | |
 | | | | | | | | | | | | | |
 | • | | | | | |
 | •••••• | | | | | |
 | | | | | | | | | | | •••••• | •••••• | |
••••• | | | | •••••• | ••••• | ••••• |
••••• | · • • • • • • • • • • • • • • • • • • • | | | | | |
 | | | | | | |
• | | | motion. F | | 2000 J. 1 r | ie cyclist | exerts a | constant | force of i | nagnitude | F N in the | directio | |-----------|--------|-------------|------------|----------|----------|------------|-----------|------------|---| | ••••• | •••••• | •••••• | ••••• | | ••••• | ••••• | | ••••• | | | | | | ••••• | | ••••• | ••••• | | ••••• | ••••• | •••••• | •••••• | ••••• | •••••• | •••••• | ••••• | •••••• | ••••• | | | ••••• | •••••• | •••••• | ••••• | •••••• | •••••• | ••••• | •••••• | •••••• | | | | | | | | | | | | | | ••••• | •••••• | •••••• | ••••• | ••••• | •••••• | ••••• | | ••••• | · • • • • • • • • • • • • • • • • • • • | | | | | ••••• | | | | | | | | | | | ••••• | | | | | ••••• | | | | | | ••••• | | | | | | | | | | | | | | | | ••••• | • | | | | | | | | ••••••• | •••••• | | ••••• | •••••• | •••••• | •••••• | •••••• | •••••• | | | | •••••• | | ••••• | •••••• | •••••• | •••••• | ••••• | •••••• | · • • • • • • • • • • • • • • • • • • • | | | ••••• | ••••• | ••••• | | ••••• | ••••• | | ••••• | | 3 A block of mass $3 \, \text{kg}$ is at rest on a rough plane inclined at 60° to the horizontal. A force of magnitude | Find the coefficient of friction between the block and the plane. | | |---|------------| | | | | | | | | | | | | | | | | | ••••••••• | | | ••••• | | | | | | | | | ••••• | | | | | | | | | | | | •••••••••• | | | ••••• | ••••••• | | | ••••• | | | | •• | |------|---|----| | | | | | | | | | | | •• | | | | | | | | | | | | •• | | | | •• | | | | | | | | •• | | | | | | | | | | | | •• | | The | force of magnitude 15 N is now replaced by a force of magnitude X N acting up the line of greates | st | | slop | e. | | | (ii) | Find the greatest value of X for which the block does not move. [2] | 2] | | (11) | I ma the greatest value of it for which the clock does not move. | ٠, | | | | | | | | | | | | •• | | | | | | | | | | | | •• | | | | | | | | | | | | •• | | | | | | | | | | | | •• | | | | | | | | | | | | •• | | | | •• | | | | | | | | •• | | | | | | | | •• | | | | •• | Two blocks A and B of masses 4 kg and 5 kg respectively are joined by a light inextensible string. The blocks rest on a smooth plane inclined at an angle α to the horizontal, where $\tan \alpha = \frac{7}{24}$. The string is parallel to a line of greatest slope of the plane with B above A. A force of magnitude 36 N acts on B, parallel to a line of greatest slope of the plane (see diagram). | Find the acceleration of the blocks and the tension in the string. | [5] | |--|-----| (ii) | At a particular instant, the speed of the blocks is $1 \mathrm{ms^{-1}}$. Find the time, after this instant, that it takes for the blocks to travel 0.65 m. [2] | |------|--| A small ring P is threaded on a fixed smooth horizontal rod AB. Three horizontal forces of magnitudes 4.5 N, 7.5 N and F N act on P (see diagram). | (i) | Given that these three forces are in equilibrium, find the values of F and θ . [6] | |-----|---| •••• | |------|--|-----------| | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | | | •••• | | (ii) | is given instead that the values of F and θ are 9.5 and 30 respectively, and the acceleration he ring is 1.5 m s ⁻² . Find the mass of the ring. | of
[2] | | | 6 | oward force of 5.6 N on the particle when it is in the water. | |-----|--| | (i) | Find the velocity of the particle at the instant when it reaches the surface of the water. | instantaneous rest in the water. You may assume that the tank is deep enough so that the particle does not reach the bottom of the tank. | (iii) | Sketch a velocity-time graph for the motion of the particle from the instant at which it is released until it comes to instantaneous rest in the water. [3] | |-------|---| | 7 | A particle moves in a straight line, starting from rest at a point O , and comes to instantaneous rest at | |---|---| | | a point P. The velocity of the particle at time t s after leaving O is $v \mathrm{ms^{-1}}$, where | $$v = 0.6t^2 - 0.12t^3.$$ |) \$ | Show that the distance OP is 6.25 m. | [5] | |------|--|-----| | | | | | | | | | • | | | | • | | | | • | | | | • | | | | • | | | | • | | | | • | | | | • | | | | • | On another occasion, the particle also moves in the same straight line. On this occasion, the displacement of the particle at time t s after leaving O is s m, where $$s = kt^3 + ct^5.$$ It is given that the particle passes point P with velocity $1.25 \,\mathrm{m\,s^{-1}}$ at time t=5. | (ii) | Find the values of the constants k and c . | [5] | |-------|---|-----| (iii) | Find the acceleration of the particle at time $t = 5$. | [2] | | | | | | | | | | | | | | | | | # **Additional Page** | If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown. | | | | | |---|--|--|--|--| ## 15 ## **BLANK PAGE** #### **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.