

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/5
Paper 5 Mechanics 2	2 (M2)	Oct	ober/November 2019
			1 hour 15 minutes
Candidates answer of	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value for the acceleration due to gravity is needed, use 10 m s⁻².

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 50.

A uniform solid cone has weight 5 N and base radius 0.1 m . AB is a diameter of the base of the cone. The cone is held in equilibrium, with A in contact with a rough horizontal surface and AB vertical by a force applied at B . This force has magnitude 3 N and acts parallel to the axis of the cone (see diagram). Calculate the height of the cone.			

(i)	Find θ .
)	Calculate the time after projection at which the direction of motion of the particle is 20° below the horizontal.

A smooth horizontal surface has two fixed points O and A which are $0.8 \mathrm{m}$ apart. A particle P of mass $0.25 \mathrm{kg}$ is projected with velocity $3 \mathrm{ms^{-1}}$ horizontally from A in the direction away from O . The velocity of P is $v \mathrm{ms^{-1}}$ when the displacement of P from O is $x \mathrm{m}$. A force of magnitude $kv^2x^{-2} \mathrm{N}$ opposes the motion of P .
(i) Show that $v \frac{dv}{dx} = -4kv^2x^{-2}$. [1]
(ii) Express v in terms of k and x . [5]

A small ball B is projected with speed $30 \,\mathrm{m\,s^{-1}}$ at an angle of 60° above the horizontal from a point O.

(i)	Express x and y in terms of t and hence find the equation of the trajectory of the ball.	
		•••
		•••
		•••
		•••
		•••
		•••
		•••
(ii)	Find the value of x for which OB makes an angle of 45° above the horizontal.	•••
(ii)	Find the value of x for which OB makes an angle of 45° above the horizontal.	•••
(ii)	Find the value of x for which OB makes an angle of 45° above the horizontal.	
(ii)		
(ii)		
(ii)		
(ii)		
(ii)		

A particle P of mass 0.3 kg is attached to one end of a light elastic string of natural length 0.6 m and

Find the initial acceleration of P .

ii) F	ind the greatest speed of P .	[5]
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		•••••
•••		•••••
•••		
•••		
•••		
•••		
•••		
•••		

	elastic string with modulus of elasticity 46 N. The particle P moves with const s^{-1} in a horizontal circle with centre at the mid-point of AB .	ant angular speed
(i)	Find the speed of P .	[2
i)	Calculate the tension in the string BP and hence find the natural length of this	string. [7

•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
 ••••••
 ••••••
 •••••
 ••••••
 •••••
 ••••••
 •••••
 •••••

ABC is the cross-section through the centre of mass of a uniform prism which rests with AB on a rough horizontal surface. $AB = 0.4 \,\mathrm{m}$ and C is $0.9 \,\mathrm{m}$ above the surface (see diagram). The prism is on the point of toppling about its edge through B.

(i)	Show that angle $BAC = 48.4^{\circ}$, correct to 3 significant figures.	[3]
		•••••
		•••••
		•••••

A force of magnitude 18 N acting in the plane of the cross-section and perpendicular to AC is now applied to the prism at C. The prism is on the point of rotating about its edge through A.

(ii)	Calculate the weight of the prism.	[3]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
(iii)	Given also that the prism is on the point of slipping, calculate the coefficient of friction between the prism and the surface.	een [4]
(iii)		

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.				

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.