1 hour 15 minutes

Cambridge International AS & A Level

Paper 2 Pure Mathematics 2			May/June 2020
MATHEMATI	cs		9709/21
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

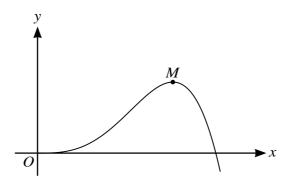
This document has 12 pages. Blank pages are indicated.

$\ln(x+1) - \ln x = 2 \ln 2$.	[3]
 	•••••
 	•••••
 	•••••
 	•••••
 	•••••
	•••••

2 The polynomial $p(x)$ is defi-	ined by	defin	is	(x)	p	ynomial	poly	The	2
----------------------------------	---------	-------	----	-----	---	---------	------	-----	---

$p(x) = 6x^3 + ax^2 + 9x + b,$					
where a and b are constants. It is given that $(x-2)$ and $(2x+1)$ are factors of $p(x)$.					
Find the values of a and b .	[5]				
	••••				
	••••				
	••••				
	••••				
	••••				
	••••				
	••••				
	••••				
	••••				
	••••				
	••••				
	••••				

3	A curve	has	parametric	equations


$x = e^{x} - 2e^{-x}$, $y = 3e^{-x} + 1$.	
Find the equation of the tangent to the curve at the point for which $t = 0$.	[5]
	•••••
	•••••
	•••••

© UCLES 2020 9709/21/M/J/20

4

(a)	Sketch, on the same diagram, the graphs of $y = 3x + 2a $ and $y = 3x - 4a $, where a is a posit constant.	ive
		[3]
(b)	Find the coordinates of the point of intersection of the two graphs.	[3]
		••••
(c)	Deduce the solution of the inequality $ 3x + 2a < 3x - 4a $.	[1]
		••••

5

The diagram shows part of the curve with equation $y = x^3 \cos 2x$. The curve has a maximum at the point M.

Show that the x-coordinate of M satisfies the equation $x = \sqrt[3]{1.5x^2 \cot 2x}$.	[3]
	•••••

© UCLES 2020 9709/21/M/J/20

••••••	••••••	•••••	•	•	•••••	••••••
						•••••
•••••		•••••		•••••	•••••	
••••••	••••••	•••••	•••••••••••••••••••••••••••••••••••••••	•••••	•••••	•••••
						•••••
use an nerany		sea on the equ	iation in part	(a), to find the	λ-coordinal nt figures	e oi <i>m</i> co
to 3 significant	t figures. Give	the result of	each iteration	to 5 significan	it figures.	
to 3 significant	t figures. Give	the result of		to 3 significar		
to 3 significant	t figures. Give	the result of				
to 3 significant	t figures. Give	the result of				
to 3 significant	t figures. Give	the result of				
to 3 significant	t figures. Give	the result of				
to 3 significant	t figures. Give	the result of				
to 3 significant	t figures. Give	the result of				
to 3 significant	t figures. Give	the result of				
to 3 significant	t figures. Give	the result of				
to 3 significant	t figures. Give	the result of				
to 3 significant	t figures. Give	the result of				
to 3 significant	t figures. Give	the result of				
to 3 significant	t figures. Give	the result of				
to 3 significant	t figures. Give	the result of				

Prove that

$\sin 2\theta(\csc \theta - \sec \theta) \equiv \sqrt{8} \cos(\theta + \frac{1}{4}\pi).$	[5]
	••••••
	•••••

('n)	Solve	the	eo	uation
•	v.	,	SOLVE	uic	CU	uauon

$\sin 2\theta$	cosec	θ –	$\sec \theta$) =	1
		•	500	,	-

	for $0 < \theta < \frac{1}{2}\pi$. Give the answer correct to 3 significant figures.	[2]
(c)	Find $\int \sin x (\operatorname{cosec} \frac{1}{2}x - \operatorname{sec} \frac{1}{2}x) \mathrm{d}x$.	[3]

	is 9.	
(b)	Hence find $\int_{1}^{6} \frac{9x^3 - 6x^2 - 20x + 1}{3x + 2} dx$, giving the answer in the form a integers	$a+\ln b$ where a and
(b)	Hence find $\int_{1}^{6} \frac{9x^3 - 6x^2 - 20x + 1}{3x + 2} dx$, giving the answer in the form a integers.	$a+\ln b$ where a and
(b)		$a+\ln b$ where a and
(b)		$a+\ln b$ where a and
(b)		$a+\ln b$ where a and
(b)		$a+\ln b$ where a and
(b)		$a+\ln b$ where a and
(b)		+ ln b where a and
(b)		+ ln b where a and
(b)		+ ln b where a and

© UCLES 2020 9709/21/M/J/20

(c)	Find the exact root of the equation $9e^{9y} - 6e^{6y} - 20e^{3y} - 8 = 0.$ [4]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.