

Cambridge International AS & A Level

Paper 3 Pure N	Mathematics 3		May/June 2020
MATHEMATI	CS		9709/32
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

·

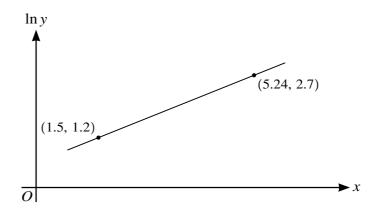
1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.


INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

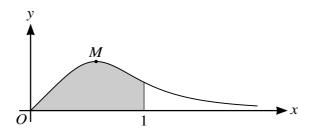
This document has 20 pages. Blank pages are indicated.

		•••••	•••••	•••••	•••••		•••••	•••••	••••••	• • • •
					•••••					· • • • •
•••••		•••••	••••••	••••••	•••••	•••••	••••••	•••••	••••••	••••
					•••••					· • • • •
										.
•••••	••••••	•••••	••••••	••••••	••••••	•••••	••••••	•••••	•••••••	••••
		•••••	•••••	•••••	•••••		•••••	•••••		.
										,
		••••••	•••••	••••••	••••••	••••••	••••••	•••••	••••••	••••
			•••••	•••••	•••••		•••••	•••••		••••
										· • • • •
			•••••	••••••			••••••			••••
			•••••	••••••	•••••	•••••	••••••	•••••		• • • •
										· • • • •
		•••••	••••••	••••••	•••••		•••••	•••••	••••••	••••
										· • • • •
•••••	••••••	•••••	••••••	••••••	••••••	••••••	••••••	•••••	•••••••	••••
					•••••		•••••			,
										,
		•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		••••

2

The variables x and y satisfy the equation $y^2 = Ae^{kx}$, where A and k are constants. The graph of $\ln y$ against x is a straight line passing through the points (1.5, 1.2) and (5.24, 2.7) as shown in the diagram.

Find the values of A and k correct to 2 decimal places.	[5]
	••••••
	••••••
	••••••
	•••••
	••••••
	••••••


		4	
3	Find the exact value of	$\int_1^4 x^{\frac{3}{2}} \ln x \mathrm{d}x.$	[5]

5 Sigili	ficant figures	•						
		•••••	•••••	•••••	•••••	•••••	 •••••	
		•••••				•••••	 	
		•••••					 	
		•••••					 	
		•••••					 	
		•••••					 	
••••••		•••••		••••••	••••••	•••••	 	
•••••		•••••		••••••	•••••	•••••		
••••••	······································	•••••			••••••	•••••	 	,
•••••		•••••		••••••	•••••	•••••	 	
•••••						•••••	 	
••••••		•••••			•••••		 	
		•••••				•••••	 	
		•••••					 	
						•••••	 	
•••••		•••••			•••••			

•••••			••••••	••••••	•••••		•••••	••••••	•••••
••••••			•••••		•••••		•••••	••••••	•••••
•••••			•••••		•••••			•••••	•••••
••••••	•	••••••	••••••	•••••••	••••••	•••••••••	••••••	••••••	•••••
			•••••		•••••				•••••
••••••	,		••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
••••••			••••••	••••••	•••••		•••••	••••••	•••••
• • • • • • • • •	••••••		••••••		••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••
			•••••		•••••		•••••		
••••••			••••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
							••••		
				•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••

 •••••
•••••
•••••

6

The diagram shows the curve $y = \frac{x}{1 + 3x^4}$, for $x \ge 0$, and its maximum point M.

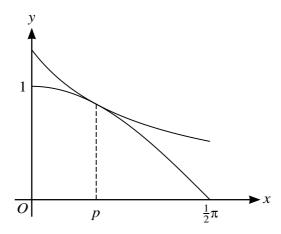
Find the x -coordinate of M , giving your answer correct to 3 decimal places.	[4]

by the cur	ve, the x -ax	kis and th	e line x	= 1.						
						•••••	•••••	•••••		
•••••		••••••								
•••••	••••••		· • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••••	••••••
••••••		•••••		•••••	••••••	••••••	••••••	•••••	••••••	•••••
••••••		•••••		•••••	•••••			•••••	••••••	•••••
••••••		•••••					• • • • • • • • • • • • • • • • • • • •	•••••		•••••
	•••••	•••••					• • • • • • • • • • • • • • • • • • • •			•••••
							•••••			
		••••••								
										•••••
•••••	,	•••••	· • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••
•••••		•••••			••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
		•••••			•••••	•••••	• • • • • • • • • • • • • • • • • • • •		••••••	•••••
				••••••	••••••	•••••	•••••	•••••	•••••••	•••••
					•••••			•••••	••••••	•••••

7	The	variables 3	x and	y satisfy	the	differential	equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y-1}{(x+1)(x+3)}.$$

It is given that y = 2 when x = 0. Solve the differential equation, obtaining an expression for y in terms of x. [9]


	re real.
•	
•	
••	
• •	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	

(b)

(i) On a sketch of an Argand diagram, shade the region whose points represent complex

•	numbers z satisfying the inequalities $ z-2-2i \le 1$ and $\arg(z-4i) \ge -\frac{1}{4}\pi$.	
.]	Find the least value of $\operatorname{Im} z$ for points in this region, giving your answer in a	ın exact i
)]	Find the least value of $\text{Im } z$ for points in this region, giving your answer in a	ın exact i
]	Find the least value of $\text{Im } z$ for points in this region, giving your answer in a	ın exact i
	Find the least value of $\text{Im } z$ for points in this region, giving your answer in a	ın exact i
	Find the least value of Im z for points in this region, giving your answer in a	in exact i
	Find the least value of $\text{Im } z$ for points in this region, giving your answer in a	n exact
	Find the least value of Im z for points in this region, giving your answer in a	ın exact i
•		

9

The diagram shows the curves $y = \cos x$ and $y = \frac{k}{1+x}$, where k is a constant, for $0 \le x \le \frac{1}{2}\pi$. The curves touch at the point where x = p.

(a)	Show that <i>p</i> satisfies the equation $\tan p = \frac{1}{1+p}$.	[5]

F	ive the resu	iit of each	i iteration	to 5 decir	nai piaces.	•		
•••••	•••••					•••••		
					•••••			
••••••	••••••		,			••••••	••••••	•
	•••••						•••••	•••••
					,			
••••••	•••••••					•••••	••••••	• • • • • • • • • • • • • • • • • • • •
	•••••							
•••••	•••••	, 	•	•••••	•	•••••	••••••	•••••
	1.1 1	C I						
Hence fine	d the value	of k corre	ect to 2 de	ecimal pla	ces.			
••••••	•••••					••••••	••••••	• • • • • • • • • • • • • • • • • • • •
•••••				•••••		•••••		

Find	I a vector equation for the line through M and N .	
•••••		· ···
•••••		· • • • •
		· • • • •
		.
•••••		.
•••••		.
•••••		· • • • •
•••••		· • • • •
••••		
		• • • •
••••		
•••••		
••••		
••••		
••••		

The line through M and N intersects the line through O and B at the point P.

Find the po							
	•••••	•••••		•••••			•••••
	•••••	•••••		•••••	•••••	•••••	•••••
• • • • • • • • • • • • • • • • • • • •			••••••	•••••			•••••
				•••••			•••••
	••••						
			••••••				•••••
							•••••
	• • • • • • • • • • • • • • • • • • • •						
•••••••••							
Calculate a	angle <i>OPM</i> ,	, giving yo	ur answer ii	n degrees.			
Calculate a	ingle <i>OPM</i>	, giving yo	ur answer ii	n degrees.			
Calculate a	ingle <i>OPM</i>	, giving yo	ur answer ii	ı degrees.			
Calculate a	ingle <i>OPM</i>	, giving yo	ur answer ii	n degrees.			
Calculate a	ingle <i>OPM</i>	, giving yo	ur answer ii	n degrees.			
Calculate a	ingle <i>OPM</i>	, giving yo	ur answer in	n degrees.			
Calculate a	ingle <i>OPM</i>	, giving yo	ur answer in	n degrees.			
Calculate a	ingle <i>OPM</i>	, giving yo	ur answer in	n degrees.			
				n degrees.			

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.