

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

October/November 2020

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Blank pages are indicated.

BLANK PAGE

© UCLES 2020 9709/33/O/N/20

••••	
••••	•••••
••••	••••••
••••	
••••	
••••	••••••
	•••••
••••	 •••••
••••	••••••
••••	 •••••
••••	••••••
	•••••
••••	
••••	•••••

On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z| \ge 2$ and $|z - 1 + i| \le 1$. [4]

© UCLES 2020 9709/33/O/N/20

3	The	parametric	equations	of a	a curve	are
•	1110	parametric	equations	01	u cui ve	uic

$$x = 3 - \cos 2\theta, \quad y = 2\theta + \sin 2\theta,$$
for $0 < \theta < \frac{1}{2}\pi$.

Show that $\frac{dy}{dx} = \cot \theta$. [5]

4	Solve	the	equatic	n

$\log_{10}(2x+1) = 2\log_{10}(x+1) - 1.$					
Give your answers correct to 3 decimal places.	[6]				
	•••••				
	••••••				
	•••••				
	••••••				
	••••••				
	•••••				
	••••••				

5	(a)	By sketching a suitable pair of graphs, show that the equation $\csc x = 1 + e^{-\frac{1}{2}x}$ has exactly two roots in the interval $0 < x < \pi$.
	(b)	The sequence of values given by the iterative formula
		$x_{n+1} = \pi - \sin^{-1}\left(\frac{1}{e^{-\frac{1}{2}x_n} + 1}\right),$
		with initial value $x_1 = 2$, converges to one of these roots.
		Use the formula to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]

	value of R and give α correct to 2 decimal places.	
		••••
		• • • • •
		••••
		• • • • •
		••••
		· • • • •
		••••
		••••

Hence solve the equation $\sqrt{6}\cos\frac{1}{3}x + 3\sin\frac{1}{3}x = 2.5$, for $0^{\circ} < x < 360^{\circ}$.	
	•••••
	•••••
	•••••
	•••••
	••••••
	•••••
	••••••
	•••••
	••••••

 •••••
•••••
•••••
•••••
•••••
•••••
•••••
 •••••

Find the other roots of this equation.	[
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

8 The coording	nates (x, y) of a	general point of a curve	e satisfy the differen	tial equation
----------------	---------------------	--------------------------	------------------------	---------------

$$x\frac{\mathrm{d}y}{\mathrm{d}x} = (1 - 2x^2)y,$$

for x > 0. It is given that y = 1 when x = 1.

Solve the differential equation, obtaining an expression for y in terms of x .	[6]
	••••••

9	Let $f(x) = 8 + 5x + 12x^2$	
	Let $f(x) = \frac{8 + 3x + 12x}{(1 - x)(2 + 3x)^2}$.	

(a)	Express $f(x)$ in partial fractions.	[5]

Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and including the term in

10

The diagram shows the curve $y = (2 - x)e^{-\frac{1}{2}x}$, and its minimum point M.

(a)	Find the exact coordinates of M .	[5]

© UCLES 2020 9709/33/O/N/20

answer in
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
••••••
••••••
••••••

a)	Given that the two lines intersect, find the value of a and the position vector of the pointersection.

two possioi	e values of a.						
•••••	••••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •
		•••••			•••••		•••••
•••••	••••••			••••••	•	•	•••••
		•••••	,	•••••	•••••		••••••
	•••••		•••••	•••••			
							•••••
		•••••					
••••••	•••••	•••••		••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •
		•••••					•••••
			•••••				
••••••	••••••	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •
		•••••					
		•••••					
••••••	••••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •
							•••••
••••••	•••••	••••••	· • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.					
	••••••				
	••••••				

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.