

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

February/March 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

	,	 				
•••••		 				
••••		 				
•••••		 •••••				••••••
•••••		 				
•••••		 				
•••••		 •••••	•••••			
•••••		 •••••				
•••••		 ••••••	•••••••••••	•••••	•••••	•••••
		 •••••				
		 	•••••			
		 •••••				
•••••		 				

ind the values of a and b .	[5
	••••••

equation for $0^{\circ} < x < 180^{\circ}$.				
				•••••
			••••••	
				•••••
	•••••	•••••	••••••	••••••
				••••••
				•••••
	•••••		•••••••••••	•••••
	•••••	•••••	••••••	•••••
				•••••
				•••••
				•••••
	•••••	•••••	••••••	•••••
	•••••			•••••
				•••••

4	The variables	x and	y satisfy	the	differential	equation
---	---------------	-------	-----------	-----	--------------	----------

$$(1 - \cos x)\frac{\mathrm{d}y}{\mathrm{d}x} = y\sin x.$$

It is given that y = 4 when $x = \pi$.

So	olve the differential equation, obtaining an expression for y in terms of x .
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	

(b)	Sketch the graph of y against x for $0 < x < 2\pi$. [1]

 ••••
,

	$f(x) = \frac{5a}{(2x - a)(3a - x)}, \text{ where } a \text{ is a positive constant.}$	
a)	Express $f(x)$ in partial fractions.	
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		••
		•••
		••
		••
		••
		••
		••
		••
		•••
		••
		••
		•••
		•••

1	Hence show that $\int_{a}^{2a} f(x) dx = \ln 6$.	
•		•••
•		
•		•••
•		
•		•••
•		
•		
•		•
•		
•		• • •
•		
•		•••
•		
•		
•		•••
•		
•		•••
•		
•		
•		•••

Show that the lines are skew.	

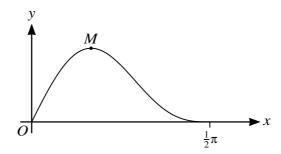
••••	
•••••	• • • • • • • • • • • • • • • • • • • •
••••	
•••••	•
••••	
•••••	•••••••
••••	
••••	
•••••	•••••••••••
••••	
••••	•••••••••••
••••	
••••	 ••••••

The complex numbers u and v are defined by u = -4 + 2i and v = 3 + i.

8

Find $\frac{u}{v}$ in the form $x + iy$, where x and y are real.
Hence express — in the form re^{r} , where r and θ are exact.
Hence express $\frac{u}{v}$ in the form $re^{i\theta}$, where r and θ are exact.
Hence express $\frac{1}{v}$ in the form $re^{i\theta}$, where r and θ are exact.
Hence express $\frac{1}{v}$ in the form re^{v} , where r and θ are exact.
Hence express — in the form $re^{i\theta}$, where r and θ are exact.
Hence express $\frac{1}{v}$ in the form re^{v} , where r and θ are exact.

In an Argand diagram, with origin O, the points A, B and C represent the complex numbers u, v and 2u + v respectively.


	•••••
	•••••
Prove that angle $AOB = \frac{3}{4}\pi$.	
	•••••
	•••••
	••••••
	•••••

^	T (C()	$e^{2x} + 1$
9	Let $f(x) =$	$\frac{e^{-x}}{e^{2x}-1}$, for $x > 0$

Verify by calculation that <i>a</i> lies between 1 and 1.5.	
Use an iterative formula based on the equation in part (a) to determine a correplaces. Give the result of each iteration to 4 decimal places.	ct to 2 dec
	ct to 2 dec

 •••••
 •••••
 ••••••
 •••••
 ••••••
••••••
••••••
••••••
••••••

10

The diagram shows the curve $y = \sin 2x \cos^2 x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

	ng the substitution $u = \sin x$, find the exact area of the region bounded by the curve and xis.	[5
••••		••••
••••		••••
•••		••••
		••••
• • • •		••••
		••••
		••••
		••••
•••		••••
••••		
		••••
		••••

•	•
	•
	•••••

Additional Page

must be clearly shown.	estion number(s)
	••••••
	••••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.