

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

Fine	d the equa	ation of t	the curv	e.							
•••••	•••••	••••••	••••••	••••••	••••••	•••••	•••••		••••••	· • • • • • • • • • • • • • • • • • • •	••••••
•••••							•••••				
	•••••										
•••••	•••••	••••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••		•••••
•••••											
•••••	•••••	••••••	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••		•••••
•••••	•••••			••••••					•••••		
•••••	•••••		••••••	••••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	· • • • • • • • • • • • • • • • • • • •	••••••
				••••••	•••••		• • • • • • • • • • • • • • • • • • • •		•••••		•••••
•••••	•••••	•••••••		• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••		•••••
	•••••				•••••		•••••				•••••
•••••											

Find the 60th term of the	progression		[5]
and the ooth term of the	progression.		ر~.
		•••••	
		•••••	 ······································

i ma the mst	three terms i	1				
			•••••			•••••
•••••						
••••••		•••••	••••••		••••••	•••••
•••••						
	•••••		••••••			•••••
•••••				•••••		•••••
Hence find the	ne coefficient	of x^2 in the exp	oansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		•••••
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$+x)^2(3-2x)^5.$		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(3-2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find th	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find the	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find the	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find the	ne coefficient	of x^2 in the exp	pansion of (4	$+x)^2(3-2x)^5$.		
Hence find the	ne coefficient	of x^2 in the exp	pansion of (4	$(x^2 + x)^2 (3 - 2x)^5$.		
Hence find the	ne coefficient	of x^2 in the exp	pansion of (4	$+x)^2(3-2x)^5$.		
Hence find the	ne coefficient	of x^2 in the exp	pansion of (4	$+x)^2(3-2x)^5$.		

4

The diagram shows part of the graph of $y = a \tan(x - b) + c$.

Given that $0 < b < \pi$, state the values of the constants a , b and c .	[3]

Given that k is negative, find the sum to infinity of the progression.	[4]
	•••••

6

Find the value	of k .				
		•••••	•••••	•••••	
		•••••	•••••		
		•••••	•••••		
		••••••	•••••	•••••	
	•••••	••••••			 ••••••

	Prove the identity $\frac{1 - 2\sin^2\theta}{1 - \sin^2\theta} \equiv 1 - \tan^2\theta$.	[2]
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		

Hence solve the equat	$1 - \sin^2 \theta$			
				•••••
		•••••••••••	•••••••••••	
•••••			•••••	•••••
••••••		•••••••••••	••••••	•••••
••••••		•••••	••••••	•••••
			••••••	

The diagram shows a symmetrical metal plate. The plate is made by removing two identical pieces from a circular disc with centre C. The boundary of the plate consists of two arcs PS and QR of the original circle and two semicircles with PQ and RS as diameters. The radius of the circle with centre C is 4 cm, and PQ = RS = 4 cm also.

(a)	Show that angle $PCS = \frac{2}{3}\pi$ radians.	[2]
		•••••
(b)	Find the exact perimeter of the plate.	[3]
		•••••
		•••••
		•••••

9 Functions f and g are defined as follows:

$$f(x) = (x-2)^2 - 4 \text{ for } x \ge 2,$$

 $g(x) = ax + 2 \text{ for } x \in \mathbb{R},$

where a is a constant.

(a)	State the range of f.	[1]
(b)	Find $f^{-1}(x)$.	[2]
(c)	Given that $a = -\frac{5}{3}$, solve the equation $f(x) = g(x)$.	[3]

(d)	Given instead that $ggf^{-1}(12) = 62$, find the possible values of a .	[5]

(a)	Find the x -coordinates of the points A and B where the circle intersects the x -axis.	[2]
		•••••
		•••••
b)	Find the point of intersection of the tangents to the circle at A and B .	[6
b)		[6
b)	Find the point of intersection of the tangents to the circle at A and B .	[6
b)	Find the point of intersection of the tangents to the circle at <i>A</i> and <i>B</i> .	[6
b)	Find the point of intersection of the tangents to the circle at <i>A</i> and <i>B</i> .	[6
b)	Find the point of intersection of the tangents to the circle at <i>A</i> and <i>B</i> .	[6
b)	Find the point of intersection of the tangents to the circle at <i>A</i> and <i>B</i> .	[6
b)	Find the point of intersection of the tangents to the circle at <i>A</i> and <i>B</i> .	[6
b)	Find the point of intersection of the tangents to the circle at <i>A</i> and <i>B</i> .	[6
b)	Find the point of intersection of the tangents to the circle at <i>A</i> and <i>B</i> .	[6
(b)	Find the point of intersection of the tangents to the circle at A and B.	[6

		16
11	The	equation of a curve is $y = 2\sqrt{3x+4} - x$.
	(a)	Find the equation of the normal to the curve at the point $(4, 4)$, giving your answer in the form $y = mx + c$. [5]
	(b)	Find the coordinates of the stationary point. [3]

(c)	Determine the nature of the stationary point.	2]
		•••
		•••
(d)	Find the exact area of the region bounded by the curve, the x-axis and the lines $x = 0$ and $x = 2$	1. 4]
		•••
		•••
		•••
		.
		•••
		•••
		••
		••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.					
	••				
	••				
	••				
	••				
	••				
	••				
	••				
	••				
	••				

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.