

# Cambridge International AS & A Level

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

### **INSTRUCTIONS**

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

#### **INFORMATION**

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [ ].

| Express $16x^2 - 24x + 10$ in the form $(4x + a)^2 + b$ . |                |
|-----------------------------------------------------------|----------------|
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           |                |
|                                                           | cuy one root   |
| Find the value of this root.                              | city one root  |
| Find the value of this root.                              | cuy one root   |
| Find the value of this root.                              |                |
| Find the value of this root.                              |                |
| Find the value of this root.                              | ctry one root  |
| Find the value of this root.                              |                |
| Find the value of this root.                              | ctry one root. |
| Find the value of this root.                              |                |
| Find the value of this root.                              |                |
| Find the value of this root.                              |                |
| Find the value of this root.                              |                |
| Find the value of this root.                              | ctly one root. |

| 2 (a)      | The graph of $y = f(x)$ is transformed to the graph of $y = 2f(x - 1)$ .  Describe fully the two single transformations which have been combined to give the resulting transformation. |  |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
| <b>(b)</b> | The curve $y = \sin 2x - 5x$ is reflected in the y-axis and then stretched by scale factor $\frac{1}{3}$ in the x-direction.                                                           |  |  |  |  |  |  |
|            | Write down the equation of the transformed curve. [2]                                                                                                                                  |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |
|            |                                                                                                                                                                                        |  |  |  |  |  |  |

|            | A(2, k)             | B(2.9, 2.8025)            | C(2.99, 2.9800)         | D(2.999, 2.9980)         | E(3, 3)               |
|------------|---------------------|---------------------------|-------------------------|--------------------------|-----------------------|
| (a)        | Find $k$ , given    | ving your answer co       | rrect to 4 decimal plac | es.                      | [1]                   |
|            |                     |                           |                         |                          |                       |
|            |                     |                           |                         |                          |                       |
| <b>(b)</b> | Find the g          | gradient of $AE$ , giving | g your answer correct   | to 4 decimal places.     | [1]                   |
|            |                     |                           |                         |                          |                       |
|            |                     |                           |                         |                          |                       |
|            |                     |                           |                         |                          |                       |
|            |                     |                           |                         |                          |                       |
|            | gradients ectively. | of $BE$ , $CE$ and $DE$   | , rounded to 4 decin    | nal places, are 1.9748,  | , 1.9975 and 1.9997   |
| (c)        |                     | ing a reason for your     |                         | lues of the four gradier | nts suggest about the |
|            |                     |                           |                         |                          |                       |
|            |                     |                           |                         |                          |                       |
|            | •••••               |                           |                         |                          |                       |
|            |                     |                           |                         |                          |                       |
|            |                     |                           |                         |                          |                       |
|            |                     |                           |                         |                          |                       |
|            |                     |                           |                         |                          |                       |
|            |                     |                           |                         |                          |                       |

| $\left(2x + \frac{k}{x^2}\right)^5$ is $q$ .            |  |
|---------------------------------------------------------|--|
| Given that $p = 6q$ , find the possible values of $k$ . |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |
|                                                         |  |

The function f is defined by  $f(x) = 2x^2 + 3$  for  $x \ge 0$ .

5

| (a)        | Find and simplify an expression for $ff(x)$ . | [2]   |
|------------|-----------------------------------------------|-------|
|            |                                               |       |
|            |                                               |       |
|            |                                               |       |
|            |                                               |       |
| <b>(b)</b> | Solve the equation $ff(x) = 34x^2 + 19$ .     | [4]   |
|            |                                               |       |
|            |                                               |       |
|            |                                               |       |
|            |                                               |       |
|            |                                               |       |
|            |                                               | ••••• |
|            |                                               |       |
|            |                                               |       |
|            |                                               |       |
|            |                                               |       |
|            |                                               |       |
|            |                                               |       |
|            |                                               |       |

| Fi  | nd the values of $p$ and $q$ . |        |
|-----|--------------------------------|--------|
| ••• |                                |        |
|     |                                |        |
|     |                                |        |
| ••• |                                |        |
| ••• |                                | •••••  |
| ••• |                                |        |
|     |                                |        |
| ••• |                                | •••••• |
| ••• |                                |        |
| ••• |                                |        |
|     |                                |        |
|     |                                |        |
| ••• |                                | •••••  |
| ••• |                                |        |
|     |                                |        |
|     |                                |        |
| ••• |                                | •••••  |
| ••• |                                |        |
| ••• |                                |        |
|     |                                |        |
| ••• |                                |        |
| ••• |                                | •••••  |
| ••• |                                |        |
|     |                                |        |
|     |                                |        |
| ••• |                                | •••••  |
| ••• |                                |        |
| ••• |                                |        |
|     |                                |        |

| ( <b>a</b> ) | Show that $l$ is the tangent to the circle at $A$ . [2]                                                    |
|--------------|------------------------------------------------------------------------------------------------------------|
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |
| ( <b>b</b> ) | Find the equation of the other circle of radius $\sqrt{52}$ for which $l$ is also the tangent at $A$ . [3] |
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |
|              |                                                                                                            |

|            | and $b$ are positive constants. The first, second and third terms of a geometric progression at 8 and $b+3$ respectively. |
|------------|---------------------------------------------------------------------------------------------------------------------------|
| (a)        | Find the values of a and b.                                                                                               |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
| <b>(b)</b> | Find the sum of the first 20 terms of the arithmetic progression.                                                         |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |
|            |                                                                                                                           |



The diagram shows part of the curve with equation  $y^2 = x - 2$  and the lines x = 5 and y = 1. The shaded region enclosed by the curve and the lines is rotated through 360° about the *x*-axis.

| Find the volume obtained. | [6] |
|---------------------------|-----|
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |
|                           |     |

| 10 | (0) | Duarra tha idantity | $1 + \sin x$                            | $1 - \sin x$                | _ 4 tan <i>x</i>            |        | r.41  |
|----|-----|---------------------|-----------------------------------------|-----------------------------|-----------------------------|--------|-------|
| 10 | (a) | Prove the identity  | $\frac{1-\sin x}{}$                     | $\frac{1+\sin x}{1+\sin x}$ | $\equiv \frac{1}{\cos x}$ . |        | [4]   |
|    |     |                     |                                         |                             |                             |        |       |
|    |     | •••••               |                                         | ••••••                      | •••••                       |        |       |
|    |     | ••••                |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     | •••••               | • • • • • • • • • • • • • • • • • • • • | ••••••                      | •••••                       | •••••• | ••••• |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     | •••••               |                                         | ••••••                      | •••••                       |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     | •••••               |                                         | •••••                       | ••••••                      | •••••  |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         | •••••                       |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         | •••••                       |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         | •••••                       |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     | •••••               |                                         | •••••                       |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     | • • • • • • • • • • • • • • • • • • • • | ••••••                      | •••••                       |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |
|    |     |                     |                                         |                             |                             |        |       |

| Hence solve the equation | $1 - \sin x$ | $1 + \sin x$                            | $= 8 \tan x \text{ for } 0$ | $\leq x \leq \frac{1}{2}\pi$ . |        |
|--------------------------|--------------|-----------------------------------------|-----------------------------|--------------------------------|--------|
|                          | •••••        |                                         | •••••                       |                                | •••••  |
|                          |              |                                         |                             |                                |        |
|                          |              |                                         |                             |                                |        |
|                          | •••••        | ••••••                                  | •••••                       |                                | •••••  |
|                          | •••••        |                                         |                             |                                |        |
|                          |              |                                         |                             |                                |        |
|                          |              |                                         |                             |                                |        |
|                          | •••••        | ••••••                                  | ••••••                      | •••••••                        | •••••• |
|                          |              |                                         |                             |                                |        |
|                          |              |                                         |                             |                                |        |
|                          |              |                                         |                             |                                |        |
|                          | •••••        | ••••••                                  | •••••                       | ••••••••••                     | •••••  |
|                          |              |                                         |                             |                                |        |
|                          |              |                                         |                             |                                |        |
|                          |              |                                         |                             |                                |        |
|                          | •••••        | ••••••                                  | •••••                       | ••••••••••                     | •••••  |
|                          | •••••        | ••••••                                  | •••••                       |                                | •••••  |
|                          |              |                                         |                             |                                |        |
|                          |              |                                         |                             |                                |        |
|                          | •••••        | •••••••                                 | ••••••                      | ••••••••••                     | •••••• |
|                          | •••••        | • • • • • • • • • • • • • • • • • • • • | •••••                       | •••••                          | •••••  |
|                          |              |                                         |                             |                                |        |
|                          |              |                                         |                             |                                |        |
|                          |              | •                                       | •••••                       |                                |        |
|                          |              |                                         |                             |                                |        |
|                          | •••••        |                                         | •••••                       | •••••                          | •••••  |
|                          |              |                                         |                             |                                |        |
|                          |              |                                         | •                           |                                |        |
|                          |              | •••••                                   |                             |                                |        |
|                          |              |                                         |                             |                                |        |
|                          |              |                                         |                             |                                |        |

| 11 | The stati    | gradient of a curve is given by $\frac{dy}{dx} = 6(3x - 5)^3 - kx^2$ , where k is a constant. The curve has a conary point at $(2, -3.5)$ . |  |  |  |  |
|----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    | (a)          | Find the value of $k$ . [2]                                                                                                                 |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    | <i>a</i> >   | F: 1d 6d                                                                                                                                    |  |  |  |  |
|    | ( <b>D</b> ) | Find the equation of the curve. [4]                                                                                                         |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |
|    |              |                                                                                                                                             |  |  |  |  |

| (c)          | Find $\frac{d^2y}{dx^2}$ .                                    | [2] |
|--------------|---------------------------------------------------------------|-----|
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
| ( <b>d</b> ) | Determine the nature of the stationary point at $(2, -3.5)$ . | [2] |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |
|              |                                                               |     |



The diagram shows a cross-section of seven cylindrical pipes, each of radius 20 cm, held together by a thin rope which is wrapped tightly around the pipes. The centres of the six outer pipes are A, B, C, D, E and F. Points P and Q are situated where straight sections of the rope meet the pipe with centre A.

| (a)        | Show that angle $PAQ = \frac{1}{3}\pi$ radians. | [2]  |
|------------|-------------------------------------------------|------|
|            |                                                 |      |
|            |                                                 | •••• |
|            |                                                 |      |
|            |                                                 |      |
|            |                                                 |      |
|            |                                                 |      |
|            |                                                 |      |
| <b>(b)</b> | Find the length of the rope.                    | [4]  |
|            |                                                 |      |
|            |                                                 |      |
|            |                                                 |      |
|            |                                                 |      |
|            |                                                 |      |
|            |                                                 |      |
|            |                                                 |      |
|            |                                                 |      |

| Find the area of the hexagon <i>ABCDEF</i> , giving your answer in terms of $\sqrt{3}$ . |                                         |
|------------------------------------------------------------------------------------------|-----------------------------------------|
|                                                                                          |                                         |
|                                                                                          |                                         |
|                                                                                          |                                         |
|                                                                                          |                                         |
|                                                                                          |                                         |
|                                                                                          | • • • • • • • • • • • • • • • • • • • • |
|                                                                                          |                                         |
|                                                                                          |                                         |
|                                                                                          |                                         |
|                                                                                          | • • • • • • • • • • • • • • • • • • • • |
|                                                                                          |                                         |
|                                                                                          |                                         |
|                                                                                          |                                         |
|                                                                                          | • • • • • • • • • • • • • • • • • • • • |
|                                                                                          |                                         |
|                                                                                          |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               | ••••••                                  |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |
| Find the area of the complete region enclosed by the rope.                               |                                         |

## **Additional Page**

| If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown. |    |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                | •• |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                | •• |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                | •• |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                | •• |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                | •• |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                | •• |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                | •• |  |  |  |
|                                                                                                                                | •• |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                |    |  |  |  |
|                                                                                                                                | •• |  |  |  |
|                                                                                                                                |    |  |  |  |

## **BLANK PAGE**

## **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.