

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/21

Paper 2 Pure Mathematics 2

May/June 2021

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

•••	•••••	••••••	•		•••••
•••	 •••••				
•••	 •••••	•••••			••••••
	 •••••				
•••	 •••••	••••••	•••••		•••••
•••	 •••••				
	 •••••				
•••	 •••••	•••••	••••••		•••••
•••	 •••••				•••••
•••	 •••••				
	 •••••				
•••	 •••••	•••••			••••••
•••	 •••••	•••••		,	•••••
•••	 •••••				
•••					

	to be determined.	
		•••••
		•••••
		•••••
(b)	Hence find the exact value of $\int_0^{\frac{1}{4}\pi} (\sec x + \cos x)^2 dx.$	
(b)	Hence find the exact value of $\int_0^{\frac{\pi}{4}} (\sec x + \cos x)^2 dx$.	
(b)	Hence find the exact value of $\int_0^{\frac{\pi}{4}} (\sec x + \cos x)^2 dx$.	
(b)	Hence find the exact value of $\int_0^{\frac{\pi}{4}} (\sec x + \cos x)^2 dx$.	
(b)	Hence find the exact value of $\int_0^{\frac{\pi}{4}} (\sec x + \cos x)^2 dx$.	
(b)	Hence find the exact value of $\int_0^{\frac{\pi}{4}} (\sec x + \cos x)^2 dx$.	
(b)	Hence find the exact value of $\int_0^{\frac{\pi}{4}} (\sec x + \cos x)^2 dx$.	
(b)	Hence find the exact value of $\int_0^{\frac{\pi}{4}} (\sec x + \cos x)^2 dx$.	
(b)		

4	A curve	has	parametric	equations

r -	- 1n	(2t +	6)	$-\ln t$,	٦	$y = t \ln t$
л-	- 1111	$(\angle \iota \top$	\mathbf{v}_{j}	$-\operatorname{m}\iota$,	,	$-\iota m\iota$

ind the v	alue of <i>t</i> at th	ic point?	ii the carv	c for which	х – ш т.	[:
	••••••	•••••				
	••••••	•••••			•••••	
	••••••		•••••		••••••	
•••••	••••••					
•••••	••••••	•••••				
•••••	••••••		•••••		••••••	
•••••			•••••			
• • • • • • • • • • • • • • • • • • • •						
•••••			•••••			

))	Find the exact gradient of the curve at <i>P</i> .	[5]

5

The diagram shows the curve with equation $y = \frac{3x+2}{\ln x}$. The curve has a minimum point M.

(a)	Find an autrassian for	$\frac{dy}{dx}$ and show that the <i>x</i> -coordinate of <i>M</i> satisfies the equation $x = \frac{dy}{dx}$							3x + 2
(a)	rind an expression for	dx	and snow tha	t tile x-coo	ordinate o	or we satisfie	es me equ	ation x =	$\frac{3 \ln x}{3 \ln x}$
					•••••	•••••	•••••	•••••	•••••
				•••••	•••••				••••••
					•••••				
					•••••	•••••			
									•••••
					•••••	•••••			
				•••••					

			••••••	•••••		•••••	••••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	••••••
•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••	••••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	••••••
		i, buscu on	me equanc	on in part (a), to find the	t figures	ie 01 111 ec
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					
to 5 significa	ant figures.	Give the re					

(a)	Use the trapezium rule with three intervals to find an approximation to $\int_{1}^{4} \frac{6}{1 + \sqrt{x}} dx$. Give your answer correct to 5 significant figures. [3]
(b)	Find the exact value of $\int_{1}^{4} 2e^{\frac{1}{2}x-2} dx$. [3]

(c)

The diagram shows the curves $y = \frac{6}{1 + \sqrt{x}}$ and $y = 2e^{\frac{1}{2}x - 2}$ which meet at a point with *x*-coordinate 4. The shaded region is bounded by the two curves and the line x = 1.

	Use your answers to parts (a) and (b) to find an approximation to the area of the shaded region. Give your answer correct to 3 significant figures. [2]
(d)	State, with a reason, whether your answer to part (c) is an over-estimate or under-estimate of the exact area of the shaded region. [1]

7	The	nolvr	omial	n(1)	r) ic	defined	hv
,	1110	poryr	ionnai	$P(\lambda$	<i>i)</i> 15	acimea	υy

$$p(x) = ax^3 - 11x^2 - 19x - a,$$

where a is a constant. It is given that (x-3) is a factor of p(x).

(a)	Find the value of a .	[2]
(b)	When a has this value, factorise $p(x)$ completely.	[3]

	Hence find the exact values of y that satisfy the equation $p(e^y + e^{-y}) = 0$.
•••••	
•••••	
•••••	
•••••	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

15

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.