

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

May/June 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

••••	 •••••
••••	
••••	
••••	
••••	•••••
••••	
••••	
••••	
••••	
••••	
••••	

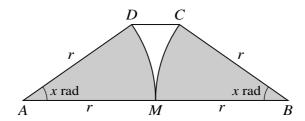
On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z+1-\mathrm{i}| \leqslant 1$ and $\arg(z-1) \leqslant \frac{3}{4}\pi$. [4]

Explain why the graph of y against $\ln x$ is a straight line and state the exact value of the g of the line.	gra
	•••
	•••
	••••
	•••
	••••
	•••
	•••
	•••
	•••
	•••
	•••
given that the line intersects the y-axis at the point where $y = 1.3$. Calculate the value of A , giving your answer correct to 2 decimal places.	•••
	••••
Calculate the value of A , giving your answer correct to 2 decimal places.	
Calculate the value of A , giving your answer correct to 2 decimal places.	••••
Calculate the value of A , giving your answer correct to 2 decimal places.	
Calculate the value of A , giving your answer correct to 2 decimal places.	
Calculate the value of A , giving your answer correct to 2 decimal places.	
Calculate the value of A , giving your answer correct to 2 decimal places.	
Calculate the value of A , giving your answer correct to 2 decimal places.	

	gration by par			J 0			
	•••••						
•••••	•••••	•••••	••••••	•••••	••••••	•••••	••••••
	•••••						
•••••	•••••	•••••	••••••	•••••	••••••	•••••	••••••
	•••••						
••••••	•••••	••••••	••••••	•••••	••••••	•••••	••••••
•••••	•••••	•••••	••••••		••••••	•••••	
•••••	••••••	•••••	••••••	•••••	••••••	•••••	••••••
•••••	•••••	•••••	••••••	•••••	•••••	•••••	
	•••••				•••••	•••••	
	•••••				•••••	•••••	
•••••	•••••		•••••		•••••	•••••	
•••••	•••••				•••••	•••••	
•••••					•••••	•••••	

Find the two square roots of u , giving your answers in the form $a + ib$, where a and b are real and exact. [5]

6	(a)	Prove that $\csc 2\theta - \cot 2\theta \equiv \tan \theta$.	[3]
	(b)	Hence show that $\int_{\frac{1}{4}\pi}^{\frac{1}{3}\pi} (\csc 2\theta - \cot 2\theta) d\theta = \frac{1}{2} \ln 2.$	[4]


The curve passes	s through the poi	ints with coo	rdinates (0,	1) and (3, e).		
By setting up and of x .	d solving a differ	rential equati	on, find the	equation of	the curve, ex	pressing y	in term [7
			•••••		•••••	•••••	•••••
							••••••
							••••••
			•••••		•••••	•••••	•••••
			•••••				•••••
			•••••		•••••	•••••	•••••
			•••••		•••••	•••••	
							•••••
			•••••		•••••	•••••	•••••
							•••••
			•••••		•••••		•••••
			•			•	
••••••	•••••	••••••	•••••	••••••	•••••	••••••	•••••

	coordinates of the stationary points of the curve. Give your answers correct to 3 decine appropriate.
•••••	

9	Let $f(x) =$	$14 - 3x + 2x^2$		
,	Let $I(x)$ –	$(2+x)(3+x^2)$		

					•••••													
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••
		•••••	•••••	•••••	•••••						•••••		•••••	•••••	•••••			
•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••
		• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • •						•••••		•••••	•••••			•••••	
	••••••	•••••	•••••	••••••	•••••		•••••	•••••	•••••	• • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••
		•••••			•••••								•••••					
• • • • • • •	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••
		• • • • • • • • • • • • • • • • • • • •			• • • • • • •								•••••					
• • • • • •	••••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	• • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
					•••••													
• • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • •	•••••	•••••	•••••	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • •	•••••	•••••	••••
					•••••													
• • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••
					• • • • • • •													
• • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	••••••	•••••	•••••	••••
					•••••								•••••					
•••••		•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••
					• • • • • • •													
• • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
		••••			•••••							•••••			•••••			
.,						.,		.,										•
		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••			•••••			•••••	•••••	•••••	•••••	•••••		•••••	

The diagram shows a trapezium ABCD in which AD = BC = r and AB = 2r. The acute angles BAD and ABC are both equal to x radians. Circular arcs of radius r with centres A and B meet at M, the midpoint of AB.

(a)	Given that the sum of the areas of the shaded sectors is 90% of the area of the trapezium, show that x satisfies the equation $x = 0.9(2 - \cos x) \sin x$. [3]									
(b)	Verify by calculation that x lies between 0.5 and 0.7. [2]									

(c)	Show that if a sequence of values in the interval $0 < x < \frac{1}{2}\pi$ given by the iterative formula
	$x_{n+1} = \cos^{-1}\left(2 - \frac{x_n}{0.9\sin x_n}\right)$
	converges, then it converges to the root of the equation in part (a). [2]
(d)	Use this iterative formula to determine x correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

11	\overrightarrow{OB}	respect to the origin O , the points A and B have position vectors given by $\overrightarrow{OA} = 2\mathbf{i} - \mathbf{j}$ and $= \mathbf{j} - 2\mathbf{k}$.								
	(a)	Show that $OA = OB$ and use a scalar product to calculate angle AOB in degrees. [4]								

Find the p	possible position	vectors of P .				
	•••••					
• • • • • • • • • • • • • • • • • • • •				•••••	•••••	
					••••	
			•••••			
			•••••			
• • • • • • • • • • • • • • • • • • • •			•••••		•••••	
•		••••••	••••••	•••••••	••••••	••••••
•		••••••	••••••	•••••••	••••••	••••••
			•••••			
• • • • • • • • • • • • • • • • • • • •		••••••	••••••	•••••••	••••••	••••••
• • • • • • • • • • • • • • • • • • • •		••••••	••••••	••••••	••••••	••••••
• • • • • • • • • • • • • • • • • • • •		•••••••	••••••	••••••	••••••	•••••••
			•••••			
• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	•••••	••••••
			•••••		•••••	
• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	•••••	••••••
					•••••	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.									
	••								
	••								
	••								
	••								
	••								
	••								
	••								
	••								
	••								

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.