

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/13

Paper 1 Pure Mathematics 1

October/November 2021

1 hour 50 minutes

You must answer on the question paper.

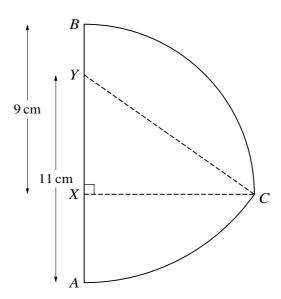
You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

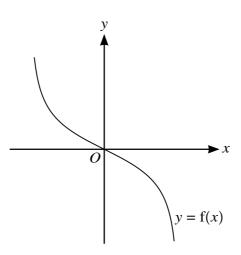

This document has 20 pages. Any blank pages are indicated.

Describe fully,	in the correct orde	er, the two trans	sformations that	have been combin	ed.	[4
	······					•••••
						•••••
			•••••			•••••
•••••	•••••		•••••	••••••	•••••	••••
						••••
						••••
						••••
	,					•••••
						•••••
						•••••
						••••

2 (a	a)	Find the first three terms, in ascending powers of x , in the expansion of $(1 + ax)^6$. [1]
(l		Given that the coefficient of x^2 in the expansion of $(1-3x)(1+ax)^6$ is -3 , find the possible values of the constant a . [4]

3 (a)	Express $5y^2 - 30y + 50$ in the form $5(y + a)^2 + b$, where a and b are constants.	2]
		••
		••
		••
		••
(b)	The function f is defined by $f(x) = x^5 - 10x^3 + 50x$ for $x \in \mathbb{R}$.	
	Determine whether f is an increasing function, a decreasing function or neither.	3]
		••
		••
		••
		••
		••
		••
		••
		••
		••

The		
(a)	Find the smallest value of n for which the n th term is negative.	
	given that the sum of the first $2k$ terms of this progression is equal to the sum of the Find the value of k .	first k
		first k
		first k
		first k t
		first k t
	Find the value of k.	
	Find the value of k.	
	Find the value of k.	
	Find the value of k.	
	Find the value of k.	
	Find the value of k.	
	Find the value of k.	



In the diagram, X and Y are points on the line AB such that BX = 9 cm and AY = 11 cm. Arc BC is part of a circle with centre X and radius 9 cm, where CX is perpendicular to AB. Arc AC is part of a circle with centre Y and radius Y and Y cm.

(a)	Show that angle $XYC = 0.9582$ radians, correct to 4 significant figures. [

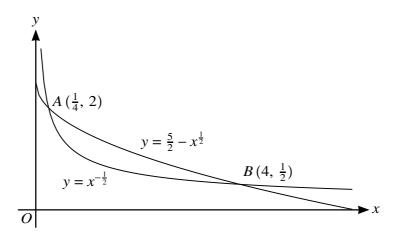
b)	Find the perimeter of <i>ABC</i> .	[6]

6

The diagram shows the graph of y = f(x).

(a) On this diagram sketch the graph of $y = f^{-1}(x)$. [1]

It is now given that $f(x) = -\frac{x}{\sqrt{4 - x^2}}$ where -2 < x < 2.


(b)	Find an expression for $f^{-1}(x)$.	[4]
		· • • • •
		· • • • • •
		· · · · · · ·
		· • • • •
		· • • • • •
		· • • • •
		· • • • •
		· • • • •

The	function g is defined by $g(x) = 2x$ for $-a < x < a$, where a is a constant.
(c)	State the maximum possible value of a for which fg can be formed. [1]
(d)	Assuming that fg can be formed, find and simplify an expression for $fg(x)$. [2]
(u)	Assuming that ig can be formed, find and simplify an expression for $ig(x)$.

7	(a)	Show that the equation $\frac{\tan x + \cos x}{\tan x - \cos x} = k$, where k is a constant, can be expressed as
		$(k+1)\sin^2 x + (k-1)\sin x - (k+1) = 0.$ [4]

,	Hence solve the equation	$\frac{\tan x + \cos x}{\tan x - \cos x} = 4 \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	
			•••••
			••••••

8

The diagram shows the curves with equations $y = x^{-\frac{1}{2}}$ and $y = \frac{5}{2} - x^{\frac{1}{2}}$. The curves intersect at the points $A(\frac{1}{4}, 2)$ and $B(4, \frac{1}{2})$.

(a)	Find the area of the region between the two curves. [6]

Find the value of p .	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

The line y = 2x + 5 intersects the circle with equation $x^2 + y^2 = 20$ at A and B.

9

•	
••	
• •	
• •	
• •	
• •	
••	
• •	

A straight line through the point (10, 0) with gradient m is a tangent to the circle.

(b)	Find the two possible values of m .	[5]
		••••••

10	A curve has ed	quation $y = f($	(x) and it i	s given that
----	----------------	------------------	--------------	--------------

$$f'(x) = (\frac{1}{2}x + k)^{-2} - (1 + k)^{-2},$$

where k is a constant. The curve has a minimum point at x = 2.

	nd $f''(x)$ in terms of k and x , and hence find the set of possible values of k .	[3
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		•••••
	by given that $k=-3$ and the minimum point is at $(2,31)$	•••••
	w given that $k = -3$ and the minimum point is at $(2, 3\frac{1}{2})$.	ſ.
	w given that $k = -3$ and the minimum point is at $(2, 3\frac{1}{2})$. $\operatorname{nd} f(x)$.	[4
		[4
		[-
Fi 		
Fi 	f(x).	
Fi 	f(x).	
Fi 	f(x).	

(c)	Find the coordinates of the other stationary point and determine its nature. [4]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.					
	••				
	•••				
	••				
	. 				
	· • •				
	. 				
	, 				
	•••				
	•••				
	•••				
	· • •				
	· • •				
	. 				
	••				
	•••				
	•••				
	•••				
	· • •				
	· • •				
	. 				

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.