

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

 •••••
•••••
••••••
•••••
 •••••
 •••••
•••••
••••••
•••••
 •••••
 •••••

[1]

2. ((a)	Sketch	the	oranh	of $v =$	12r –	31
_	(4)	DIXCLCII	uic	SIUDII	O_1 V $-$	120	~ I.

(b)	Solve the inequality $ 2x - 3 < 3x + 2$.	[3]

						•••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••••	•••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •
							•••••
•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••
•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••
•••••			•••••			•••••	•••••
••••••	•••••		•••••••	•••••••	••••••	••••••	•••••••
•••••		,	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
							•••••
••••••		•••••	•••••	•••••	•••••	••••••	•••••
•••••		•••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •

Find the exact value of $\int_{\frac{1}{3}\pi}^{\pi} x \sin \frac{1}{2} x dx.$	

6	(a)	By first expanding $\cos(x - 60^{\circ})$, show that the expression
		$2\cos(x-60^\circ)+\cos x$
		can be written in the form $R\cos(x-\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$. Give the exact value of R and the value of α correct to 2 decimal places. [5]
	(b)	Hence find the value of x in the interval $0^{\circ} < x < 360^{\circ}$ for which $2\cos(x - 60^{\circ}) + \cos x$ takes its least possible value. [2]

7 The equation of a curve is ln(x + y) = x - 2y.

Show that $\frac{dy}{dx} = \frac{x+y-1}{2(x+y)+1}$.	

••••	 ••
	 •••
••••	 • • •
	 ••
••••	. • •
••••	••
••••	• •
••••	
	•
••••	
	• • •
••••	••
••••	 •••
	 •••
••••	•••
••••	
••••	•••
••••	
	• • •
••••	
	 •••
••••	

In the diagram, OABCD is a pyramid with vertex D. The horizontal base OABC is a square of side 4 units. The edge OD is vertical and OD = 4 units. The unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OD respectively.

The midpoint of AB is M and the point N on CD is such that DN = 3NC.

(a)	Find a vector equation for the line through M and N .	[5]

		•••••		•••••				
•••••			•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
			••••••	•••••	•			
			•••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •
•••••			•••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •		••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	• • • • • • • • • • • • • • • • • • • •
•••••	•••••••		••••••	••••••	••••••	•••••		• • • • • • • • • • • • • • • • • • • •
				•••••				• • • • • • • • • • • • • • • • • • • •
				•••••				• • • • • • • • • • • • • • • • • • • •
•••••			•••••	••••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
	•••••							

0	Let $f(x) =$	1
,	Let $f(x) =$	$(9-x)\sqrt{x}$

	Find the x-coordinate of the stationary point of the curve with equation $y = f(x)$.
• •	
••	
••	
•	
••	
••	
• •	
••	
••	
••	
••	
• •	

b)	Using the substitution $u = \sqrt{x}$, show that $\int_0^4 f(x) dx = \frac{1}{3} \ln 5$.	[6]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

10	A large plantation of area $20 \mathrm{km^2}$ is becoming infected with a plant disease. At time t years the area
	infected is $x \text{km}^2$ and the rate of increase of x is proportional to the ratio of the area infected to the
	area not yet infected.

When t = 0, x = 1 and $\frac{dx}{dt} = 1$.

1	a)	Show	that v	and t	caticfy	tha	differential	Legistics	n
J	\mathbf{a}) Show	uiat x	and ι	sausty	uie	umeremuai	equation	П

	•	•		
		$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{19x}{20 - x}.$		[2]
(b)	Solve the differential equation and $x = e^{0.9+0.05x}$.	I show that when	t = 1 the value of x satis	fies the equation [5]

(c)	Use an iterative formula based on the equation in part (b), with an initial value of 2, to determine <i>x</i> correct to 2 decimal places. Give the result of each iteration to 4 decimal places. [3]
(d)	Calculate the value of t at which the entire plantation becomes infected. [1]

a)	Express u in the form $re^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$, giving the exact values of r and θ .
	Hence show that u^6 is real and state its value.
)	Hence show that u^6 is real and state its value.
)	Hence show that u^6 is real and state its value.
))	Hence show that u^6 is real and state its value.
))	Hence show that u^6 is real and state its value.
)	Hence show that u^6 is real and state its value.
))	Hence show that u^6 is real and state its value.
))	Hence show that u^6 is real and state its value.
)	Hence show that u^6 is real and state its value.
•)	Hence show that u^6 is real and state its value.

)		On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $0 \le \arg(z - u) \le \frac{1}{4}\pi$ and $\operatorname{Re} z \le 2$. [4]
	(ii)	
	(ii)	
	(ii)	3 significant figures. [2]
	(ii)	3 significant figures. [2]
	(ii)	3 significant figures. [2]
	(ii)	3 significant figures. [2]
	(ii)	3 significant figures. [2]
	(ii)	3 significant figures. [2]
	(ii)	
	(ii)	3 significant figures. [2]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.	;)
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••
	••

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.