

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/63

Paper 6 Probability & Statistics 2

October/November 2021

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

BLANK PAGE

It is known that the height H, in metres, of trees of a certain kind has the distribution N(12.5, 10.24).

(a)	State the distribution of \overline{H} , giving the values of any parameters.	[2]
(b)	Find P($12 < \overline{H} < 13$).	[3]

The number of enquiries received per day at a customer service desk has a Poisson distribution w mean 45.2. If more than 60 enquiries are received in a day, the customer service desk cannot do with them all.						
Use a suitable approximating distribution to find the probability that, on a randomly chosen day, customer service desk cannot deal with all the enquiries that are received.						

A random sample of 75 students at a large college was selected for a survey. 15 of these students

Calculate the value of α correct to 2 significant figures.	

4 A random variable <i>X</i> has probability density function given	4	A random	variable X ha	s probability	y density	y function	given	by
--	---	----------	-----------------	---------------	-----------	------------	-------	----

robability density function given by
$$f(x) = \begin{cases} \frac{1}{18}(9 - x^2) & 0 \le x \le 3, \\ 0 & \text{otherwise.} \end{cases}$$

(a)	Find $P(X < 1.2)$.	[3]
	E. 1E(A)	F0.1
(D)	Find $E(X)$.	[3]

© UCLES 2021

The median of X is m.

)	Show that $m^3 - 27m + 27 = 0$.	[3]

5	(a)	of 25	The proportion of people having a particular medical condition is 1 in 100 000. A random sampl of 2500 people is obtained. The number of people in the sample having the condition is denote by X .						
		(i)	State, with a justification, a suitable approximating distribution for X , giving the values of any parameters. [2]						
		(ii)	Use the approximating distribution to calculate $P(X > 0)$. [2]						

(b)	The percentage of people having a different medical condition is thought to be 30%. A researcher suspects that the true percentage is less than 30%. In a medical trial a random sample of 28 people was selected and 4 people were found to have this condition.
	Use a binomial distribution to test the researcher's suspicion at the 2% significance level. [5]

	n = 40	$\Sigma t = 560$	$\Sigma t^2 = 7850$	
(a)	Calculate unbiased estimates of	μ and σ^2 .		

The random variable S denotes the time, in seconds, for $100 \,\mathrm{m}$ races run by Suki. S has the independent distribution N(14.2, 0.3).

un	will be at least 0.1 s more than Tania's time.	
•••		
•••		••••••
•••		••••••
•••		•••••••
•••		
•••		•••••••
•••		
•••		••••••
•••		••••••••
•••		
•••		••••••
•••		
•••		

The masses, in grams, of apples from a certain farm have mean μ and standard deviation 5.2. The

)	The mean mass of the 100 apples is found to be 63.5 g.	
	Carry out the test at the 2.5% significance level.	5
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••

(Given that the value of μ is in fact 62.7, calculate the probability of a Type II error.
`	Given that the value of μ is in fact 02.7, calculate the probability of a Type if cirol.
•	
•	
•	
•	
•	
•	
•	
 •	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.