

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

May/June 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

	•••••	•••••	• • • • • • • • • • • • • • • • • • • •					•••••
	••••							
	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	••••••					• • • • • • • • •
	•••••							• • • • • • • • • • • • • • • • • • • •
••••••	•••••	••••••	•	•••••••	••••••	•••••••	•••••••	• • • • • • • • • • • • • • • • • • • •
								• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••						• • • • • • • • • • • • • • • • • • • •
	•••••							
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •
								• • • • • • • • •
	•••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • •
								• • • • • • • • • • • • • • • • • • • •
	•••••							• • • • • • • • • • • • • • • • • • • •
	•••••							• • • • • • • • • • • • • • • • • • • •
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••	• • • • • • • • •
								•••••
•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••••	• • • • • • • • • • • • • • • • • • • •

С	oefficients.
••	
••	
••	
••	
S	State the set of values of x for which the expansion is valid.
J	water the set of variety of x for which the expansion is varie.
••	
••	

 •••••

4 The variables x and y satisfy the differential equation
--

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{xy}{1+x^2},$$

and y = 2 when x = 0.

Solve the differential equation, obtaining a simplified expression for y in terms of x .	[7]
	· • • • • • • • • • • • • • • • • • • •
	· ····
	•••••

The polynomial $ax^3 - 10x^2 + bx + 8$, where a and b are constants, is denoted by p(x). It is given that

I	Find the values of a and b .	
•		•••••
•		•••••
•		
•		
•		
•		
•		
•		
•		
•		•••••
•		
•		
•		
•		
•		
•		

	When a and b have these values, factorise $p(x)$ completely.	
		•••••
••		
		•••••
		•••••
		•••••
		•••••
••		
••		
••		
		•••••
		•••••
		•••••
••		

6	Let $I =$	\int_{0}^{3}	$\frac{27}{}$ dx.
•	2001	\int_{0}	$\frac{27}{\left(9+x^2\right)^2}\mathrm{d}x.$

(a)	Using the substitution $x = 3 \tan \theta$, show that $I = \int_0^{\frac{1}{4}\pi} \cos^2 \theta d\theta$.	[4]
		· • • • • • • • • • • • • • • • • • • •
		.
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••
		•••••
		•••••
		· • • • • • • • • • • • • • • • • • • •
		· • • • • • • • • • • • • • • • • • • •

Hence find the exact value of I .	

Expre	ess <i>u</i> in to	erms of a	, in the f	form <i>x</i> +	iy, when	$\mathbf{re} x$ and \mathbf{y}	y are real	and exact		
•••••			••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	••••••	•••••	••••
•••••			••••••	•••••		•••••				••••
										•••
•••••		· • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	•••••	•••••	•••••	• • •
•••••										•••
										•••
•••••			•••••	••••••	•	•••••	••••••	•••••		•••
•••••			•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••
	•••••					•••••				•••
•••••			••••••	•••••	•	••••••	••••••	•••••		•••
•••••			•••••			•••••		•••••	•••••	•••
						•••••				•••
•••••			••••••	•••••	••••••	•••••	•••••	••••••	•••••	•••
, .	,		•••••	•••••		•••••			•••••	• • •
										•••
• • • • • • • • • • • • • • • • • • • •			••••••	••••••		•••••	•••••	••••••		•••
•••••						•••••				•••
	•••••									•••

It is now given that a = 3.

Express u	in the form	$re^{i\theta}$, who	ere $r > 0$ ai	$10 - n < \theta \le$	π, giving the	e exact values	s of r and θ .	•
•••••		•••••						
								· • • • •
		•••••						••••
						•••••		••••
								••••
Using your where <i>r</i> >	r answer to	part (b), t	and the two	o square roc	ots of u . Give	your answers		
Using your where $r >$	answer to 0 and –π <	part (b), t θ ≤ π, gi	and the two	o square roc act values o	ots of u . Give of r and θ .	your answers	s in the form	n <i>i</i>
Using your where <i>r</i> >	answer to 0 and −π <	part (b), t	find the two	o square roc act values o	ots of u . Give of r and θ .	your answers	s in the form	n <i>r</i>
Using your where <i>r</i> >	answer to 0 and −π <	part (b), t < θ ≤ π, gi	find the two	o square roc act values o	ots of u . Give of r and θ .	your answers	s in the form	n <i>r</i>
Using your where r >	answer to 0 and −π <	part (b), t	find the two	o square roc act values o	ots of u . Give of r and θ .	your answers	s in the form	n <i>r</i>
Using your where r >	answer to 0 and -π <	part (b), t	find the two	o square roc act values o	ots of u . Give of r and θ .	your answers	s in the form	n <i>r</i>
Using your where r >	answer to 0 and -π <	part (b), 1 < θ ≤ π, gi	and the two	o square roc act values o	ots of u . Give of r and θ .	your answers	s in the form	n <i>r</i>
Using your where r >	answer to 0 and −π <	part (b), t < θ ≤ π, gi	find the two	o square roc act values o	ots of u . Give of r and θ .	your answers	s in the form	m <i>i</i>
Using your where r >	answer to 0 and -π <	part (b), t < θ ≤ π, gi	find the two	o square roc act values o	ots of u . Give of r and θ .	your answers	s in the form	m <i>i</i>
Using your where r >	answer to 0 and -π <	part (b), 1 < θ ≤ π, gi	and the two	o square roc act values o	ots of u . Give of r and θ .	your answers	s in the form	n <i>r</i>
Using your where r >	r answer to 0 and -π <	part (b), t < θ ≤ π, gi	find the two	o square roc act values o	ots of u . Give of r and θ .	your answers	s in the form	n <i>r</i>

8 The equation of a curve is $x^3 + y^3 + 2xy + 8 =$	= 0
--	-----

	Express $\frac{dy}{dx}$ in terms of x and y.	
•		••••••
•		••••••
•		•••••
•		••••••
•		••••••
•		•••••
•		••••••
•		
•		•••••
•		•••••

The tangent to the curve at the point where x = 0 and the tangent at the point where y = 0 intersect at the acute angle α .

	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

In the diagram, OABCDEFG is a cuboid in which OA = 2 units, OC = 4 units and OG = 2 units. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OG respectively. The point M is the midpoint of DF. The point N on AB is such that AN = 3NB.

(a)	Express the vectors OM and MN in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} .	[3]
		· · · · · ·
(b)	Find a vector equation for the line through M and N .	[2]
		· • • • • • • • • • • • • • • • • • • •
		· • • • • • • • • • • • • • • • • • • •
		· • • • • •
		· • • • • • • • • • • • • • • • • • • •
		· · · · · · ·

	show that the length of the perpendicular from O to the line through M and N is $\sqrt{\frac{53}{6}}$.	١
••		
•		
•		
•		
		•••
		••
•		••
		••
•		••
		•••
• •		••
•••		
•••		
•••		
• •		••

The curve $y = x\sqrt{\sin x}$ has one stationary point in the interval $0 < x < \pi$, where x = a (see diagram).

(a)	Show that $\tan a = -\frac{1}{2}a$.	[4]

(b)	Verify by calculation that a lies between 2 and 2.5.	[2]
(c)	Show that if a sequence of values in the interval $0 < x < \pi$ given by the it $x_{n+1} = \pi - \tan^{-1}(\frac{1}{2}x_n)$ converges, then it converges to a , the root of the equation is	
(d)	Use the iterative formula given in part (c) to determine a correct to 2 decimal presult of each iteration to 4 decimal places.	places. Give the [3]

Additional Page

must be clearly shown.	estion number(s)
	••••••
	••••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.