

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

May/June 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

	•••••								
							•••••		
•••••	••••••	••••••	•••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••••	•••••••
•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••		••••••
•••••	•••••	•••••	•••••	•••••	•••••		•••••		
•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
		•••••					• • • • • • • • • • • • • • • • • • • •		
•••••		••••••	••••••	••••••	••••••	•••••••	••••••		•
•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••	••••••
•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
•••••	•••••	•••••	•••••	•••••	•••••		•••••		
		•••••							
•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••••	• • • • • • • • • • • • • • • • • • • •	•	•••••••••

3

hat when $p(x)$ is divided by $(x + 2)$ the remainder is 5.	
Find the values of a and b .	[5]

Find the <i>x</i> -o	coordinate of t	this stationar	y point, giv	ing your ans	wer correct to	3 significan	t figures.
						•••••	
•••••						•••••	
						•••••	
•••••							
•••••						•••••	
•••••						•••••	
•••••						•••••	
•••••						•••••	
•••••							

(a)	By sketching a suitable pair of graphs, show that the equation $\ln x = 3x - x^2$ has one real root.	2]
(b)	Verify by calculation that the root lies between 2 and 2.8.	2]
		•••
		•••
		•••
		•••
		•••
(c)	Use the iterative formula $x_{n+1} = \sqrt{3x_n - \ln x_n}$ to determine the root correct to 2 decimal place.	es. 3]
	· · · · · · · · · · · · · · · · · · ·	•••
		•••
		•••
		•••
		•••
		•••

6	The variables	x and y	satisfy t	the diffe	rential ed	quation
---	---------------	-----------	-----------	-----------	------------	---------

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x\mathrm{e}^{y-x}$$

and y = 0 when x = 0.

	Solve the differential equation, obtaining an expression for y in terms of x .
•	

(b)	Find the value of y when $x = 1$, giving your answer in the form $a - \ln b$, where a and b are integers. [1]

		10	
7	The	e equation of a curve is $x^3 + 3x^2y - y^3 = 3$.	
	(a)	Show that $\frac{dy}{dx} = \frac{x^2 + 2xy}{y^2 - x^2}$.	[4]
			•••••
			•••••

•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••		•••••	•••••	•••••	•••••	
•••••	•••••		•••••			•••••	•••••		•••••	•••••	•••••		•••••	•••••	•••••		
			•••••				•••••				•••••			•••••		•••••	
			•••••						•••••	•••••	•••••			•••••		•••••	
			•••••											•••••			
			•••••											•••••			
			•••••											•••••			
			•••••														
•••••	••••••	•••••	•••••	••••••	•••••	•••••	••••••	•••••	••••••	•••••	•••••	•••••	••••••	•••••	•	•••••	•••••
•••••	••••••	•••••	•••••	••••••	•••••	•••••	••••••	•••••	••••••	•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
•••••	••••••	•••••	•••••	••••••		•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	
•••••	••••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	
•••••	••••••		•••••	••••••	•••••	•••••	••••••	•••••	•••••		•••••	•••••		•••••		•••••	
•••••	••••••		•••••		•••••	•••••	•••••	•••••			•••••	•••••		•••••		•••••	
	•••••		•••••											•••••			
	•••••		•••••											•••••			
			•••••														
														••••			
			•••••			•••••	••••••			•••••	•••••	•••••	•	•		••••••	
•••••		•••••	•••••	••••••	•••••	•••••	••••••	•••••	••••••	•••••	•••••	•••••	••••••	•••••	•••••	••••••	•••••
••••••	••••••		•••••		•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	
	•••••		•••••	••••••		•••••	•••••		•••••		•••••		•••••	•••••	•••••	•••••	•••••

8	I at f(x) =	$x^2 + 9x$
o	Let $I(x) =$	$\frac{x + 9x}{(3x - 1)(x^2 + 3)}.$

(a)	Express $f(x)$ in partial fractions.	[5]
		••••••
		•••••

	,	•••••		•••••		•••••
	•••••			•••••		
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
		•••••				•••••
•••••			•	•••••		••••••
		•••••		•••••		•••••
		•••••				
•••••		•••••	•	•••••		••••••
		•••••		•••••		••••••
•••••	,	•••••	••••••••••••	•••••		••••••
						••••••

9	The	lines	l and	m	have	vector	equatio	ns
---	-----	-------	-------	---	------	--------	---------	----

$\mathbf{r} = -\mathbf{i} + 3\mathbf{j} + 4\mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} - \mathbf{k})$	and	$\mathbf{r} = 5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k} + \mu(a\mathbf{i} + b\mathbf{j} + \mathbf{k})$
enactivaly where a and h are constants		

respectively, where a and b are constants. (a) Given that l and m intersect, show that 2b - a = 4. [4]

•••••		•••••	•••••		•••••	•••••	•••••
	•••••	•••••	•••••				•••••
••••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
			•••••				•••••
						•••••	
	• • • • • • • • • • • • • • • • • • • •						
			d the position	n vector of th	ne point of i	ntersection	of l and
			d the position	n vector of th	ne point of i	ntersection	of <i>l</i> and
			d the position	n vector of th	ne point of i	ntersection	of <i>l</i> and
			d the position	n vector of th	ne point of i	ntersection	of <i>l</i> and
When a and	b have these	e values, find		n vector of th			
When a and	b have these	e values, find					
When a and	b have these	e values, find					
When a and	b have these	e values, find					
When a and	b have these	e values, find					
When a and	b have these	e values, find					
When a and	b have these	e values, find					
When a and	b have these	e values, find					
When a and	b have these	e values, find					
When <i>a</i> and	b have these	e values, find					
When a and	b have these	e values, find					
When <i>a</i> and	b have these	e values, find					
When a and	b have these	e values, find					

10	The complex number $-1 + \sqrt{7}i$ is denoted by u . It is given that u is a root of the equation
	$2x^3 + 3x^2 + 14x + k = 0,$

where k is a real constant.

(a)	Find the value of k .	[3]
(b)	Find the other two roots of the equation.	[4]

(c) On an Argand diagram, sketch the locus of points representing complex numbers z satisfying

	the equation $ z - u = 2$.	[2]
(d)	Determine the greatest value of $\arg z$ for points on this locus, giving your answer in radians.	[2]
(u)	Determine the greatest value of arg 2 for points on this locus, giving your answer in radians.	[4]
		•••••
		•••••
		•••••
		•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.				

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.