

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

May/June 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

Find, in terms of a, the set of values of x satisfying the inequality

1

2 3x + a < 2x + 3a ,	
where a is a positive constant.	[4]

 •••••
 •••••

	in x.
(b)	Hence solve the equation $\log_3(4y+1) = 1 + 2\log_3(2y-1)$, giving your answer correct to 2 dec places.

Obtain an expression for $\frac{dy}{dx}$ and show it can be written in the form $\sec^2 x(a+b\sin 2x)e^{-4x}$, whe a and b are constants.					

Hence find the exact <i>x</i> -coordinates of the two stationary points.	[3]
	•••••
	•••••

a)	Show, on an Argand diagram with origin O , the points A , B and C representing the complex numbers u , u^* and $u^* - u$ respectively.						
	State the type of quadrilateral formed by the points O, A, B and C .	[3]					
b)	Express $\frac{u^*}{u}$ in the form $x + iy$, where x and y are real.	[3]					
		•••					
		•••					
		•••					
		•••					
		• • •					
		•••					

By considering the argument of $\frac{u^*}{u}$, or otherwise, prove that $\tan^{-1}(\frac{3}{4}) = 2\tan^{-1}(\frac{1}{3})$.	
	•••
	••••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	•••
	• • •
	•••
	•••
	•••
	••••
	••••
	•••
	••••

)	Show that $\frac{dy}{dx} = \frac{\cos t}{\sin^2 t}$.	

 •••••
 •••••
•••••
•••••
 •••••
•••••
••••••
••••••
•••••

7	Let $f(x) =$	$5x^2 + 8x - 3$
,	Let $I(x)$ –	$\overline{(x-2)(2x^2+3)}$.

(a)	Express $f(x)$ in partial fractions.	[5]

•••	•••••	•••••	•••••		•••••		•••••	••••		•••••	• • • • • • •	•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••								•••••		•••••	• • • • • • •							•••••
•••	•••••	•••••	•••••	••••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••	••••••	••••••	•••••	••••••	•••••	••••••	•••••
•••										•••••	• • • • • • • • • • • • • • • • • • • •						• • • • • • • • • • • • • • • • • • • •	
•••	• • • • • • • •	•••••	•••••	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••		•••••	• • • • • • •	•••••	•••••	•••••	•••••	•••••	• • • • • • •	•••••
			•••••		•••••			•••••			•••••							
•••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	••••••	•••••	••••••	•••••	• • • • • • • •	•••••
											• • • • • • •							
•••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • •	•••••
											• • • • • • •							
•••	• • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • •	•••••	• • • • • • •	•••••	•••••	•••••	• • • • • • •	•••••	• • • • • • • •	•••••
•••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • •	•••••
•••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
											• • • • • • •							
•••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••											• • • • • • •						•••••	
•					,			.,						.,.•				
•••		•••••	•••••				•••••	••••		•••••	• • • • • • •			•••••			• • • • • • • • • • • • • • • • • • • •	•••••

At time t days after the start of observations, the number of insects in a population is N. The variation

(a)	Solve the differential equation, obtaining a relation between N , k and t .	[5]
		•••••
		•••••
		•••••

••••••		•••••••	••••••	••••••••••	•••••••	••••••	•••••••
•••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	••••••
••••••	•••••		•••••	•••••	••••••	•••••	••••••
	•••••		•••••			•••••	
•••••			••••••	•••••	••••••	•••••	••••••
Obtain an e	xpression fo	r <i>N</i> in terms	of t , and fi	nd the greate	st value of A	V predicted	by this m
Obtain an e	xpression fo	r <i>N</i> in terms	of <i>t</i> , and fi	nd the greate	st value of Λ	√ predicted	by this m
Obtain an e	xpression fo	r N in terms	of t , and fi	nd the greate	st value of A	v predicted	by this m
Obtain an e	xpression fo	r N in terms	of <i>t</i> , and fi	nd the greate	st value of A	V predicted	by this m
Obtain an e	xpression fo	r N in terms	of <i>t</i> , and fi	nd the greate	st value of A	V predicted	by this m
Obtain an e	xpression fo	r N in terms	of <i>t</i> , and fi	nd the greate	st value of A	V predicted	by this m
Obtain an e	xpression fo	r N in terms	of <i>t</i> , and fi	nd the greate	st value of N	V predicted	by this m
Obtain an e	xpression fo	r N in terms	of t, and fi	nd the greate	st value of A	V predicted	by this m
Obtain an e	xpression fo	r N in terms	of t, and fi	nd the greate	st value of A	V predicted	by this m
Obtain an e	xpression fo	r N in terms	of t, and fi	nd the greate	st value of A	V predicted	by this m
Obtain an e	xpression fo	r N in terms	of t, and fi	nd the greate	st value of A	V predicted	by this m
Obtain an e	xpression fo	r N in terms	of t, and fi	nd the greate	st value of N	V predicted	by this m
Obtain an e	xpression fo	r N in terms	of t, and fi	nd the greate	st value of A	V predicted	by this m
Obtain an e	xpression fo	r N in terms	of t, and fi	nd the greate	st value of A	V predicted	by this m
Obtain an e	xpression fo	r N in terms	of t, and fi	nd the greate	st value of A	V predicted	by this m
Obtain an e	xpression fo	r N in terms	of t, and fi	nd the greate	st value of A	V predicted	by this m
Obtain an e	xpression fo	r N in terms	of t, and fi	nd the greate	st value of N	V predicted	by this m

Wit	h respect to the origin O , the point A has position vector given by $\overrightarrow{OA} = \mathbf{i} + 5\mathbf{j} + 6\mathbf{k}$. The line l has tor equation $\mathbf{r} = 4\mathbf{i} + \mathbf{k} + \lambda(-\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$.
(a)	Find in degrees the acute angle between the directions of OA and l . [3]
(b)	Find the position vector of the foot of the perpendicular from A to l . [4]

		•••••
		•••••
		•••••
(c)	Hence find the position vector of the reflection of A in l .	[2]
(c)	Hence find the position vector of the reflection of A in l .	[2]
(c)	Hence find the position vector of the reflection of A in l .	[2]
(c)	Hence find the position vector of the reflection of <i>A</i> in <i>l</i> .	[2]
(c)	Hence find the position vector of the reflection of <i>A</i> in <i>l</i> .	[2]
(c)	Hence find the position vector of the reflection of A in l.	[2]
(c)	Hence find the position vector of the reflection of A in I.	[2]
(c)		

(a)	Show that $a = \left(\frac{35}{3\ln a - 1}\right)^{\frac{1}{3}}$.	[5]

•••••			••••••	•			
•••••			•••••	•••••	•••••	••••••	
	••••						
	•••••						
	•••••		••••••	•••••	•••••		
Use an itera	tive formula	based on the	e equation i	n part (a) to	determine	a correct	t to 2 de
Use an itera	tive formula to the result of	based on the	e equation i	n part (a) to nal places.	determine	a correct	t to 2 dea
Use an itera places. Give	tive formula	based on the	e equation i	n part (a) to nal places.	determine	a correct	t to 2 dec
Use an itera places. Give	tive formula the result of	based on the	e equation i	n part (a) to nal places.	determine	a correct	t to 2 de
Use an itera places. Give	tive formula the result of	based on the	e equation i on to 4 decir	n part (a) to nal places.	determine	a correct	to 2 de
Use an itera places. Give	tive formula the result of	based on the	e equation i	n part (a) to	determine	a correct	to 2 de
Use an itera places. Give	tive formula the result of	based on the	e equation i	n part (a) to nal places.	determine	a correct	to 2 dea
Use an itera places. Give	tive formula the result of	based on the	e equation i	n part (a) to	determine	a correct	t to 2 dea
Use an itera places. Give	tive formula	based on the	e equation i	n part (a) to	determine	a correct	to 2 de
Use an itera	tive formula the result of	based on the	e equation i	n part (a) to	determine	a correct	to 2 de
Use an itera places. Give	tive formula to the result of	based on the	e equation i	n part (a) to nal places.	determine	a correct	to 2 dea
Use an itera places. Give	tive formula the result of	based on the	e equation i	n part (a) to nal places.	determine	a correct	to 2 de
Use an itera places. Give	tive formula	based on the	e equation i	n part (a) to nal places.	determine	a correct	to 2 de
Use an itera places. Give	tive formula to the result of	based on the	e equation i	n part (a) to	determine	a correct	to 2 de
Use an itera places. Give	tive formula to the result of	based on the	e equation i	n part (a) to	determine	a correct	to 2 dea

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.