

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

October/November 2022

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

soive the	Solve the equation $2^{-1} = 3(3)$		j. Give yo	ur answer 1	n me form	$ \frac{\ln a}{\ln b} $ where a and b are integer		
						III U		[4]
• • • • • • • • • • • • • • • • • • • •								
								•••••
•••••				•••••			•••••	
• • • • • • • • • • • • • • • • • • • •				•••••		•••••	•••••	
•••••				•••••			•••••	
•••••				•••••		•••••	•••••	
•••••		•••••		•••••	•••••		•••••	
• • • • • • • • • • • • • • • • • • • •		•••••		•••••	••••••	•••••	•••••	
		•••••		•••••	•••••	•••••	•••••	
•••••		•••••		•••••	•••••	•••••	•••••	
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••	•••••	•••••	•••••
•••••			• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••		•••••	
•••••		•••••		••••••	•••••	•••••	•••••	••••••
•••••	, 	•••••	••••••	•••••	•••••	•••••	•••••	
•••••	, 	•••••	••••••	•••••	•••••	•••••	•••••	
• • • • • • • • • • • • • • • • • • • •	•	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	••••••

2

nen a has this v	value, solve						
nen a has this v	value, solve						
nen a has this v	value, solve						
nen a has this v	value, solve						
nen a has this v	value, solve						
nen <i>a</i> has this v	value, solve						
nen a has this v	value, solve						
nen a has this v	value, solve			••••••		•••••	 •••••
nen a has this v	alue, solve						
		the mequ	uality $p(x)$	< 0.			[4]
					•••••		
		•••••			•••••		
		•••••			•••••		
					•••••		
					•••••		

	01 0111010 01 1111 0	point, giving ,	your unswer ex	orrect to 3 sign	incant figures.	[0
						•••••
						•••••
						•••••
				•••••		
•••••				•••••		
						••••••
				•••••		
				•••••		
				•••••		
				•••••		

4 (a	Express $4\cos x - \sin x$ in the form $R\cos(x + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$ value of R and give α correct to 2 decimal places.	State the exact [3]
(l	Hence solve the equation $4\cos 2x - \sin 2x = 3$ for $0^{\circ} < x < 180^{\circ}$.	[5]

5	(a)	Solve the equation $z^2 - 6iz - 12 = 0$, giving the answers in the form $x + iy$, where x and y are real and exact. [3]
	(1.)	

(b) On a sketch of an Argand diagram with origin O, show points A and B representing the roots of the equation in part (a). [1]

	••••••
	•••••
	••••••
	•••••
	•••••
	•••••
	•••••
	••••••
Hence show that the triangle OAB is equilateral.	
Hence show that the triangle OAB is equilateral.	
Hence show that the triangle OAB is equilateral.	
Hence show that the triangle <i>OAB</i> is equilateral.	

6	Relative to	the origin O ,	the points A ,	B and C have	position v	ectors given	by

n
$$O$$
, the points A , B and C have position vectors give.
$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix}.$$

Using a scalar product, find the cosine of angle <i>BAC</i> .	[4]

•	 ••••
•	
	 . .
•	••••
•	••••
	 • • • • •
•	••••
	••••
	 • • • •
•	••••
•	••••
•	••••
	••••
•	 ••••
•	••••
	. .

7	The variables	x and θ	9 satisfy	the differe	ntial equation
---	---------------	------------------	-----------	-------------	----------------

$$x\sin^2\theta \frac{\mathrm{d}x}{\mathrm{d}\theta} = \tan^2\theta - 2\cot\theta,$$

for $0 < \theta < \frac{1}{2}\pi$ and x > 0. It is given that x = 2 when $\theta = \frac{1}{4}\pi$.

(-)	$d_{(-1)}$	$2 \cot \theta$
(a)	Show that $\frac{d}{d\theta}(\cot^2\theta) =$	$-\frac{1}{\sin^2\theta}$

							$\operatorname{osec}^2 \theta$.)
•••••							•••••
•••••				•••••	•••••		•••••
•••••		• • • • • • • • • • • • • • • • • • • •		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••				•••••	•••••	•••••	•••••
••••••	,	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
Solve the	umerenuai (equation at	ia ima me v	value of x wh	en $\theta = \frac{\pi}{6}$.		
				value of x wh	$en \theta = \frac{\pi}{6}.$		
		equation at		value of x wn	en $\theta = \frac{\pi}{6}$.		
		equation at		value of x wn	en $\theta = \frac{\pi}{6}$.		
			id find the v	value of x wn	en $\theta = \frac{\pi}{6}$.		
		equation at	id find the v	value of x wn	en $\theta = \frac{\pi}{6}$.		
		equation at	id find the v	value of x wn	en $\theta = \frac{\pi}{6}$.		
		equation at		value of x wn	en $\theta = \frac{\pi}{6}$.		
	umerential	equation at	id find the v	value of x wn	en $\theta = \frac{\pi}{6}$		
		equation at	id find the v	value of x wn	en $\theta = \frac{\pi}{6}$		
Solve the v				value of x wh			

The diagram shows part of the curve $y = \sin \sqrt{x}$. This part of the curve intersects the *x*-axis at the point where x = a.

(a)	State the exact value of a .	[1]
(b)	Using the substitution $u = \sqrt{x}$, find the exact area of the shaded region in the bounded by this part of the curve and the x-axis.	first quadrant [7]
		•••••

The diagram shows a semicircle with diameter AB, centre O and radius r. The shaded region is the minor segment on the chord AC and its area is one third of the area of the semicircle. The angle CAB is θ radians.

(a)	Show that $\theta = \frac{1}{3}(\pi - 1.5\sin 2\theta)$.	[4]
		•••••
		•••••
		•••••

	•••••	••••••	••••••	•••••	•••••	••••••	•••••
	••••••	••••••	••••••	•••••	••••••	••••••	•••••
•	••••••	••••••	••••••	•••••	••••••	••••••	•••••
	••••••	••••••••	•••••••••••	••••••		••••••	•••••
••••••	••••••	•••••••	•••••••••	••••••	••••••	••••••	••••••
			•••••	•••••			
						θ correct	to 3 de
Use an itera	ntive formula e the result of	based on th	e equation	in part (a) t	to determine	e θ correct	to 3 de
Use an itera	utive formula	based on th	e equation	in part (a) t	to determine	e θ correct	to 3 de
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera places. Give	utive formula	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera places. Give	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera places. Give	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		
Use an itera	ative formula e the result of	based on th	e equation on to 5 deci	in part (a) t mal places.	to determine		

10	Let $f(x) =$	$4 - x + x^2$	
10	Let $I(x) =$	$(1+x)(2+x^2)$.	

(a)	Express $f(x)$ in partial fractions.	[5]

												•••••
									•••••			••••
							•••••	••••••	•••••	•••••	••••••	••••
		••••••		•••••								
•••••							•••••		•••••	•••••	••••••	••••
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •										
•••••	••••••	••••••		•••••	••••••	•••••	•••••	••••••	••••••	•••••	••••••	••••
•••••				•••••		•••••						
• • • • • • • • • • • • • • • • • • • •												
•	••••••	•••••		•••••		•			••••••		•	••••
•••••	•••••	•••••		•••••	•••••	•••••			•••••	•••••	•••••	••••
•••••										•••••		
• • • • • • • • •	••••••	••••••	•••••	•••••	••••••	•••••	•••••	••••••	••••••	•••••	••••••	••••
•••••					•••••							••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.