

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/62

Paper 6 Probability & Statistics 2

October/November 2022

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

The results were summarised as follows.

Each of a random sample of 80 adults gave an estimate, h metres, of the height of a particular building.

	$n = 80$ $\Sigma h = 2048$ $\Sigma h^2 = 52760$	
(a)	Calculate unbiased estimates of the population mean and variance.	[3]
		••••
		••••
		••••
		••••
(b)	Using this sample, the upper boundary of an $\alpha\%$ confidence interval for the population me is 26.0.	an
		[4]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

In the past, the mean length of a particular variety of worm has been 10.3 cm, with standard deviat 2.6 cm. Following a change in the climate, it is thought that the mean length of this variety of we has decreased. The lengths of a random sample of 100 worms of this variety are found and the me of this sample is found to be 9.8 cm.					
Assuming that the standard deviation rema of whether the mean length has decreased.	ins at 2.6 cm, carry out a test at the 2% significance leve [5				

 $@ \ UCLES \ 2022 \\$ 9709/62/O/N/22

1.6% of adults in a certain town ride a bicycle. A random sample of 200 adults from this town is

1)	Use a suitable approximating distribution to find the probability that more than 3 of these adultide a bicycle.
)	Justify your approximating distribution.

The number of faults in cloth made on a certain machine has a Poisson distribution with mean

4

whe	per 10 m ² . An adjustment is made to the machine. It is required to test at the 5% significance level ther the mean number of faults has decreased. A randomly selected 30 m ² of cloth is checked an number of faults is found.
(a)	State suitable null and alternative hypotheses for the test.
(b)	Find the probability of a Type I error.

© UCLES 2022 9709/62/O/N/22

Exactly 3 faults are found in the randomly selected 30 m² of cloth.

(c)	Carry out the test at the 5% significance level.	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••
		•••••
	ter a similar test was carried out at the 5% significance level, using another randomly selected cloth.	1 30 m ²
	cloth.	
of c	cloth. Given that the number of faults actually has a Poisson distribution with mean 0.5 per 10 m	n ² , find [2]
of c	Given that the number of faults actually has a Poisson distribution with mean 0.5 per 10 m the probability of a Type II error.	n ² , find [2]
of c	Given that the number of faults actually has a Poisson distribution with mean 0.5 per 10 m the probability of a Type II error.	n ² , find [2]
of c	Given that the number of faults actually has a Poisson distribution with mean 0.5 per 10 m the probability of a Type II error.	n ² , find [2]
of c	Given that the number of faults actually has a Poisson distribution with mean 0.5 per 10 m the probability of a Type II error.	n ² , find [2]
of c	Given that the number of faults actually has a Poisson distribution with mean 0.5 per 10 m the probability of a Type II error.	n ² , find [2]
of c	Given that the number of faults actually has a Poisson distribution with mean 0.5 per 10 m the probability of a Type II error.	n ² , find [2]
of c	Given that the number of faults actually has a Poisson distribution with mean 0.5 per 10 m the probability of a Type II error.	n ² , find [2]
of c	Given that the number of faults actually has a Poisson distribution with mean 0.5 per 10 m the probability of a Type II error.	n ² , find [2]

(a)	Find the approximate distribution of the sample mean, including the values of the parameter	rs. [3
(h)	Hence find the probability that the sample mean is less than 1.8.	[3]
(D)		
		••••
		••••
		••••
		•••••

(a)	Find the probability that the total mass of these 6 bags of flour is less than 4130 g.

2 large bags.		[5
	 	 ••••••
	 	 ••••••
	 	 ••••••

The diagram shows the graph of the probability density function, f, of a random variable X which takes values between -3 and 2 only.

(a) Given that the graph is symmetrical about the line x = -0.5 and that P(X < 0) = p, find P(-1 < X < 0) in terms of p.

(b) It is now given that the probability density function shown in the diagram is given by

$$f(x) = \begin{cases} a - b(x^2 + x) & -3 \le x \le 2\\ 0 & \text{otherwise,} \end{cases}$$

where a and b are positive constants.

(i) Show that 30a - 55b = 6. [3]

			•••••	••••••	•••••	••••••
			•••••			•••••
						•••••
ii)) By substituting a suita	able value of x	into $f(x)$, find	l another equa	ation relating	a and b and
ii)) By substituting a suitation hence determine the value	able value of x alues of a and b	into $f(x)$, find	l another equa	ation relating	a and <i>b</i> and [3]
ii)) By substituting a suitate hence determine the versions.	able value of <i>x</i> alues of <i>a</i> and <i>l</i>	into f(x), find	l another equa	ation relating	<i>a</i> and <i>b</i> and [3]
ii)) By substituting a suitate hence determine the value	able value of <i>x</i> alues of <i>a</i> and <i>b</i>	into f(x), find	l another equa	ation relating	<i>a</i> and <i>b</i> and [3]
ii)) By substituting a suitate hence determine the vi	able value of x alues of a and b	into f(x), find	l another equa	ation relating	<i>a</i> and <i>b</i> and [3]
ii)) By substituting a suitate hence determine the value	able value of x alues of a and l	into f(x), find	l another equa	ation relating	<i>a</i> and <i>b</i> and [3]
ii)) By substituting a suitate hence determine the vi	able value of x alues of a and l	into f(x), find	l another equa	ation relating	(a) and b and [3]
ii)) By substituting a suitate hence determine the value	able value of x alues of a and l	into f(x), find	l another equa	ation relating	<i>a</i> and <i>b</i> and [3]
ii)) By substituting a suitate hence determine the views	able value of x alues of a and l	into f(x), find	l another equa	ation relating	<i>a</i> and <i>b</i> and [3]
ii)) By substituting a suitate hence determine the vices of	able value of x alues of a and l	into f(x), find	l another equa	ation relating	<i>a</i> and <i>b</i> and [3]
ii)) By substituting a suitate hence determine the value of	able value of x alues of a and l	into f(x), find	l another equa	ation relating	a and b and [3]
ii)) By substituting a suitate hence determine the visual suitate hence determine the vis	able value of x alues of a and l	into f(x), find	l another equa	ation relating	a and b and [3]
ii)) By substituting a suitate hence determine the visual suitate hence determine the vis	able value of x alues of a and l	into f(x), find	l another equa	ation relating	<i>a</i> and <i>b</i> and [3]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.							
	••						
	••						
	••						
	••						
	••						
	••						
	••						
	••						
	••						
	••						
	••						
	••						
	••						

© UCLES 2022 9709/62/O/N/22

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022 9709/62/O/N/22