

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

May/June 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

Find the equ	ation of the	curve.						
1								
		•••••	•••••	••••••	••••••	••••••	••••••	
			•••••					
		•••••	•••••	••••••	••••••	••••••	••••••	
		•••••	•••••	••••••	••••••	••••••	•••••	
			•••••					
••••••	•	••••••	••••••	••••••	••••••	•••••	•••••	••••••••
			•••••					
			•••••					
			•••••	••••••	••••••	•	•••••	
		•••••	•••••			••••••	•••••	
			•••••					
••••••		••••••	•••••	•••••	••••••	••••••	•••••	••••••••
			•••••				•••••	

Find the massil	ale volues of the constant a	
rina the possit	ble values of the constant a .	
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		

	terms of the constant p .
•••••	
••••	
•••••	
••••	
••••	
	nce or otherwise find the set of values of p for which the equation $4x^2 - 24x + p =$
	nce or otherwise find the set of values of p for which the equation $4x^2 - 24x + p = 1$ roots.
real	l roots.
real	
real	l roots.

5

The diagram shows the curve with equation $y = 10x^{\frac{1}{2}} - \frac{5}{2}x^{\frac{3}{2}}$ for x > 0. The curve meets the *x*-axis at the points (0, 0) and (4, 0).

Find the area of the shaded region.	[4]

The diagram shows a sector OAB of a circle with centre O. Angle $AOB = \theta$ radians and OP = AP = x. (a) Show that the arc length AB is $2x\theta \cos \theta$. [2] (b) Find the area of the shaded region APB in terms of x and θ . [4]

7	(a)	(i)	By first expanding $(\cos \theta + \sin \theta)^2$, find the three solutions of the equation
			$(\cos\theta + \sin\theta)^2 = 1$
			for $0 \le \theta \le \pi$.
			
		(ii)	Hence verify that the only solutions of the equation $\cos \theta + \sin \theta = 1$ for $0 \le \theta \le \pi$ are 0 and $\frac{1}{2}\pi$.

Prove the identit	**	$1 - \cos \theta$	$\cos \theta + \sin \theta - 1$	r a
	$y \frac{1}{\cos \theta + \sin \theta} +$	$\cos \theta - \sin \theta$	$=\frac{\cos\theta+\sin\theta-1}{1-2\sin^2\theta}.$	[3
	•••••	•••••		
		•••••		
	•••••	•••••		
		•••••		
		•••••		
•••••	•••••	•••••		
		•••••		
•••••	•••••	•••••		
		•••••		
Using the results	of (a)(ii) and (h)) solve the equ	ration	
Using the results				
			nation $2(\cos\theta + \sin\theta - 1)$	
Using the results for $0 \le \theta \le \pi$.				[:
				[
				[
				[
				[
				[:
				[-
				[:
				[:
				[:
				[-
				[:
Using the results for $0 \le \theta \le \pi$.				

8

The diagram shows the graph of y = f(x) where the function f is defined by

$$f(x) = 3 + 2 \sin \frac{1}{4}x$$
 for $0 \le x \le 2\pi$.

		503
(a)	On the diagram above sketch the graph of $v = t^{-1}(r)$	121
(a)	On the diagram above, sketch the graph of $y = f^{-1}(x)$.	[4]

(b)	Find an expression for $f^{-1}(x)$. [2]

(c)

The diagram above shows part of the graph of the function $g(x) = 3 + 2\sin\frac{1}{4}x$ for $-2\pi \le x \le 2\pi$.

	Complete the sketch of the graph of $g(x)$ on the diagram above and hence explain whether function g has an inverse.	the [2]
		•••••
(d)	Describe fully a sequence of three transformations which can be combined to transform graph of $y = \sin x$ for $0 \le x \le \frac{1}{2}\pi$ to the graph of $y = f(x)$, making clear the order in which transformations are applied.	
		•••••
		•••••
		•••••
		· ····

)	Find the two possible values of the first term.	

	olied by the <i>r</i>							
		••••••	••••••	••••••	•••••		•••••	•••
								•••
•••••			•••••	••••••	•••••	••••••	•••••	•••
•••••				•••••				•••
								•••
••••••	••••••	••••••	•••••	••••••	••••••		••••••	•••
			•••••	••••••				•••
								•••
••••••		••••••	••••••	••••••	••••••	••••••	•••••	•••
				•••••				•••
								•••
••••••	•••••	••••••	•••••	••••••	••••••	•••••••	•••••	•••
		•••••		••••••				•••
••••••		••••••	••••••	••••••	•••••	•••••	••••••	•••
•••••			•••••	••••••	•••••		••••••	•••

a)	Show that one possible value of a is 4 and find the other possible value.	
		••••••
		••••••
		•••••
		••••••
		••••••
		••••••
		••••••
		•••••

For $a = 4$, find the equation of the normal to the circle at P .	
	•
For $a = 4$, find the equations of the two tangents to the circle which are parallel	d to the norr
found in (b).	
found in (b).	
found in (b).	

11 The equation of a curve is

$$y = k\sqrt{4x + 1} - x + 5,$$

where k is a positive constant.

(a)	Find $\frac{dy}{dx}$.	[2]
(b)	Find the x -coordinate of the stationary point in terms of k .	[2]

•	
•	
•	
•	••••••
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.