

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/13

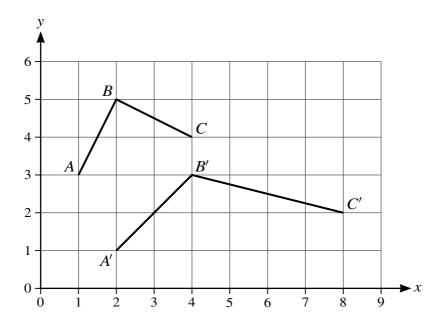
Paper 1 Pure Mathematics 1

May/June 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)


INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages.

The diagram shows the graph of y = f(x), which consists of the two straight lines AB and BC. The lines A'B' and B'C' form the graph of y = g(x), which is the result of applying a sequence of two transformations, in either order, to y = f(x).

State fully the two transformations.	[4]


3	(a)	Give the complete expansion of $\left(x + \frac{2}{x}\right)^5$.	[2]
	(b)	In the expansion of $(a + bx^2)\left(x + \frac{2}{x}\right)^5$, the coefficient of x is zero and the coeff	Sicient of $\frac{1}{x}$ is 80.
		Find the values of the constants a and b .	[4]
		Find the values of the constants a and b.	
		Find the values of the constants a and b.	
		Find the values of the constants a and b.	[4]
			[4]
			[4]
			[4]
			[4]
			[4]
			[4]
			[4]

4 (a) Show that the equation	tion
------------------------------	------

	2		2		
3	$\tan^2 x$	_ 3	cin2 v	_ 1	- 0
.,	tan a	,	SIII A		— v

found.				[3
•••••	•••••	•••••••••		•••••
••••••	•••••	•••••		•••••
•••••				
		. 2		_
Hence solve the equ	uation $3 \tan^2 x - 3$	$\sin^2 x - 4 = 0 \text{ for}$	$0^{\circ} \leqslant x \leqslant 180^{\circ}$.	[4
•••••	•••••		•••••	•••••
•••••				•••••
	•••••			•••••
	•••••	•••••••••••	•••••	••••••
••••••				
				•••••

	(a)	Find the coordinates of the two points of intersection. [4
b) Find an equation of the circle with diameter AB.		
Find an equation of the circle with diameter AB.		
	b)	Find an equation of the circle with diameter AB . [3]

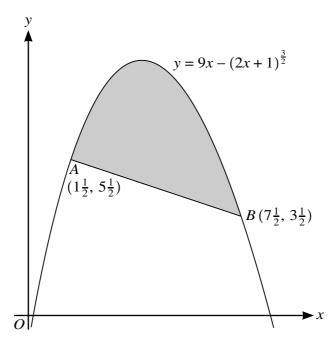
The diagram shows a sector OAB of a circle with centre O and radius r cm. Angle $AOB = \theta$ radians. It is given that the length of the arc AB is 9.6 cm and that the area of the sector OAB is 76.8 cm².

(a)	Find the area of the shaded region.	[5]
(b)	Find the perimeter of the shaded region.	[2]

The	function f is defined by $f(x) = 2 - \frac{5}{x+2}$ for $x > -2$.	
	State the range of f.	[1
		· • • • •
(b)	Obtain an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[4]
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••
		••••

The function g is defined by g(x) = x + 3 for x > 0.

(c)	Obtain an expression for $fg(x)$ giving your answer in the form integers.	$\frac{ax+b}{cx+d}$, where a, b, c and d are


A p	ogression has first term a and second term $\frac{a^2}{a+2}$, where a is a positive constant.						
(a)	For the case where the progression is geometric and the sum to infinity is 264, find the value of a .						

for the sum of the first n terms to be less than -480 .	
	••••••
	•••••
	•••••
	•••••
	••••••

	arve which passes through (0, 3) has equation $y = f(x)$. It is given that $f'(x) = 1 - \frac{2}{(x-1)^3}$. Find the equation of the curve.

The tangent to the curve at (0, 3) intersects the curve again at one other point, P.

(b)	Show that the x-coordinate of P satisfies the equation $(2x+1)(x-1)^2 - 1 = 0$.	[4]
(c)	Verify that $x = \frac{3}{2}$ satisfies this equation and hence find the y-coordinate of P .	[2]
		•••••

The diagram shows the points $A\left(1\frac{1}{2}, 5\frac{1}{2}\right)$ and $B\left(7\frac{1}{2}, 3\frac{1}{2}\right)$ lying on the curve with equation $y = 9x - (2x+1)^{\frac{3}{2}}$.

(a)	Find the coordinates of the maximum point of the curve. [4]

•	
•	
•	
•	
•	
]	Find the area of the shaded region.
•	
•	
•	
•	
•	
•	

Additional Page

must be clearly shown.	estion number(s)
	••••••
	••••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.