

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

May/June 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

1 Solve the equation

- 2r	$-4e^{-2x}$		_
$3e^{2x}$	_ /10 21	_	4
Ju	— -	_	J.

Give the answer correct to 3 decimal places.	[3]
	•••••••••••
	••••••••••
	•••••••••••

[1]

2	(a)	Sketch	the	graph	of $v =$	2x +	31.

(b)	Solve the inequality $3x + 8 > 2x + 3 $.	[3]

•••••		••••••	•••••	 	•••••
•••••	•••••	••••••	••••••	 ,	•••••
	•••••			 	

	$\cos^2\theta + 2\sin\theta\cos\theta - 3\sin^2\theta = 0.$	[2]
(b)	Hence solve the equation $\sin 2\theta + \cos 2\theta = 2\sin^2 \theta$ for $0^\circ < \theta < 180^\circ$.	[4]
()	1	

5

S	Show that $\frac{dy}{dx} = \frac{2xy}{2ay - x^2}$.	
•		
•		
•		•••••
		•••••
•		
•		
•		
•		•••••
•		

•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	••••••	•••••	••••••	••••••	••••••	••••••
••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	••••••	•••••	•••••		•••••	••••••
•••••			•••••					•••••		• • • • • • • • • • • • • • • • • • • •	•••••
	•••••				••••	•••••	••••	••••		••••	••••
			.,								
			•••••					•••••		•••••	
•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	••••••	•••••	••••••	••••••	••••••	••••••
•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••				•••••	•••••		•••••	•••••
			•••••							•••••	•••••
		•					•••••			•	
			•••••					•••••		•••••	
••••••	,	• • • • • • • • • • • • • • • • • • • •	•••••	••••••		•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••
•••••			•••••			•••••		•••••		•••••	•••••
										••••	
•••••			•••••								•••••
	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••

6 Relative to the origin O, the points A, B and C have position vectors given by

$$\overrightarrow{OA} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \qquad \overrightarrow{OB} = \begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 3 \\ -2 \\ -4 \end{pmatrix}.$$

The quadrilateral *ABCD* is a parallelogram.

(a)	Find the position vector of D .	[3]

(b)	The angle between BA and BC is θ .								
	Find the exact value of $\cos \theta$. [3]								
(c)	Hence find the area of $ABCD$, giving your answer in the form $p\sqrt{q}$, where p and q are integers. [4]								

	7	The	variables	x and	y satisfy	the	differential	equation
--	---	-----	-----------	-------	-----------	-----	--------------	----------

derential equation
$$\cos 2x \frac{dy}{dx} = \frac{4 \tan 2x}{\sin^2 3y},$$

where $0 \le x < \frac{1}{4}\pi$. It is given that y = 0 when $x = \frac{1}{6}\pi$.

Solve the differential equation to obtain the value of x when $y = \frac{1}{6}\pi$. Give your answer correct 3 decimal places.	to [8]
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••

8	Let $f(x) = \frac{3 - 3x^2}{(2x + 1)(x + 2)^2}$.
	(a) Express $f(r)$ in partial

	 •••••	•••••	••••••
•••••	 •••••	•••••	•••••••••••
	 	•••••	
	 •••••		••••••

and c are in	tegers.	•0	your answe		
			 •••••	 	
	••••••		 ••••••	 •••••	
	•••••		 	 	
•••••	•••••		 	 	
•••••			 •••••	 	
•••••			 ••••••	 •••••	
			 	 	• • • • • • •
•••••			 	 	•••••
	•••••		 •••••	 	
•••••			 ••••••	 •••••	• • • • • • •
	••••••		 •••••	 •••••	
	•••••		 	 	

S	Show that $a = \frac{1}{2} \ln(4a + 2)$.	
••		
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
••		
		•••••
		•••••
••		
••		
••		
		•••••
••		•••••
••		•••••

9

••••••	•••••	••••••	•••••	•••••	•••••
•••••	•••••	••••••	•••••	•••••	
••••••	•••••	•••••	•••••	•••••	••••••
		ased on the equat		ermine <i>a</i> correc	ct to 2 decimal J
				ermine a correc	et to 2 decimal j
				ermine <i>a</i> correc	ct to 2 decimal p
Give the resu	ılt of each iter		al places.		
Give the resu	ılt of each iter	ration to 4 decima	al places.		
Give the resu	ılt of each iter	ration to 4 decima	al places.		
Give the resu	ılt of each iter	ration to 4 decima	al places.		
Give the resu	ılt of each iter	ration to 4 decima	al places.		
Give the resu	ılt of each iter	ration to 4 decima	al places.		
Give the resu	ılt of each iter	ration to 4 decima	al places.		
Give the resu	ılt of each iter	ration to 4 decima	al places.		
Give the resu	ılt of each iter	ration to 4 decima	al places.		

10	The	e polynomial $x^3 + 5x^2 + 31x + 75$ is denoted by $p(x)$.	
	(a)	Show that $(x + 3)$ is a factor of $p(x)$.	[2]
	(b)	Show that $z = -1 + 2\sqrt{6}i$ is a root of $p(z) = 0$.	[3]
			•••••

c) l	Hence find the complex numbers z which are roots of $p(z^2) = 0$.	[7]
•		
•		
•		
		••••••
		••••••
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		••••••
•		••••••
•		
•		
•		••••••
•		••••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.