

## Cambridge International AS & A Level

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

May/June 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

## **INSTRUCTIONS**

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

## **INFORMATION**

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages.

| • | ••••• |
|---|-------|
|   |       |
|   |       |
| • | ••••• |
| • | <br>  |
|   |       |
|   |       |
|   |       |
| • |       |
|   |       |
|   | <br>  |
|   |       |
| • | ••••• |
|   |       |
|   |       |
|   |       |
| • | ••••• |
|   | <br>  |
|   |       |
|   |       |
|   |       |
| • | ••••• |
|   | ••••• |
|   | <br>  |
|   |       |
| • | ••••• |
|   |       |
|   |       |
|   |       |
| • | ••••• |
|   | ••••• |

| <br>••••• |
|-----------|
|           |
| ••••••    |
|           |
|           |
| <br>      |
|           |
| <br>      |
|           |
| <br>••••• |
|           |
| ••••••    |
| <br>      |
|           |
| <br>      |
|           |
| <br>      |
|           |
|           |
|           |
| <br>••••• |
|           |
| ••••••    |
| <br>      |
|           |
| <br>      |
|           |
|           |
|           |
| ••••••    |
|           |
|           |
| <br>      |
|           |
| <br>      |
|           |
| •••••     |
|           |
| <br>••••• |
|           |
| •••••••   |
|           |

3 On a sketch of an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities  $|z-3-i| \le 3$  and  $|z| \ge |z-4i|$ . [4]

[5]

| 4 | The parametric equations of a                     | curve are                                  |                             |           |
|---|---------------------------------------------------|--------------------------------------------|-----------------------------|-----------|
|   |                                                   | $x = \frac{\cos \theta}{2 - \sin \theta},$ | $y = \theta + 2\cos\theta.$ |           |
|   | Show that $\frac{dy}{dx} = (2 - \sin \theta)^2$ . |                                            |                             | [5]       |
|   |                                                   |                                            |                             | <br>      |
|   |                                                   |                                            |                             | <br>••••• |
|   |                                                   |                                            |                             | <br>      |
|   |                                                   |                                            |                             | <br>••••• |
|   |                                                   |                                            |                             | <br>••••• |

5



The diagram shows the part of the curve  $y = x^2 \cos 3x$  for  $0 \le x \le \frac{1}{6}\pi$ , and its maximum point M, where x = a.

| (a) | Show that a satisfies the equation $a = \frac{1}{3} \tan^{-1} \left( \frac{2}{3a} \right)$ . | [3] |
|-----|----------------------------------------------------------------------------------------------|-----|
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |
|     |                                                                                              |     |

| G     | ive the result of each iteration to 4 decimal places. |        |
|-------|-------------------------------------------------------|--------|
|       |                                                       |        |
| • •   |                                                       |        |
|       |                                                       |        |
| ••    |                                                       |        |
|       |                                                       |        |
| ••    |                                                       |        |
|       |                                                       |        |
| ••    |                                                       |        |
|       |                                                       |        |
| ••    |                                                       | •••••  |
|       |                                                       |        |
| ••    |                                                       | •••••• |
|       |                                                       |        |
| ••    |                                                       |        |
|       |                                                       |        |
| •••   |                                                       | •••••  |
|       |                                                       |        |
| •••   |                                                       | •••••  |
|       |                                                       |        |
| ••    |                                                       | •••••  |
|       |                                                       |        |
| • • • |                                                       | •••••  |
|       |                                                       |        |
| ••    |                                                       | •••••  |
|       |                                                       |        |
| •••   |                                                       | •••••  |
|       |                                                       |        |
|       |                                                       |        |
|       |                                                       |        |
|       |                                                       |        |
|       |                                                       |        |
|       |                                                       |        |
|       |                                                       |        |
|       |                                                       |        |
| ••    |                                                       |        |
|       |                                                       |        |
|       |                                                       |        |
|       |                                                       |        |
| ••    |                                                       |        |
|       |                                                       |        |
| ••    |                                                       |        |
|       |                                                       |        |
| ••    |                                                       |        |
|       |                                                       |        |
| ••    |                                                       |        |
|       |                                                       |        |
|       |                                                       |        |

|     | State the exact value of $R$ and give $\alpha$ correct to 2 decimal places. |        |
|-----|-----------------------------------------------------------------------------|--------|
|     |                                                                             |        |
|     |                                                                             |        |
| •   |                                                                             | •••••  |
|     |                                                                             |        |
| •   |                                                                             | •••••  |
|     |                                                                             |        |
|     |                                                                             |        |
|     |                                                                             | •••••  |
|     |                                                                             |        |
| • • |                                                                             | •••••• |
|     |                                                                             |        |
|     |                                                                             |        |
|     |                                                                             |        |
|     |                                                                             |        |
| •   |                                                                             | •••••  |
|     |                                                                             |        |
| •   |                                                                             | •••••  |
|     |                                                                             |        |
|     |                                                                             |        |
|     |                                                                             | •••••  |
|     |                                                                             |        |
| •   |                                                                             | •••••  |
|     |                                                                             | •••••  |
|     |                                                                             |        |
|     |                                                                             | •••••  |
|     |                                                                             |        |
| •   |                                                                             | •••••  |
|     |                                                                             |        |
|     |                                                                             |        |
|     |                                                                             |        |
|     |                                                                             |        |
| •   |                                                                             | •••••  |
|     |                                                                             |        |
|     |                                                                             |        |
|     |                                                                             |        |
|     |                                                                             |        |
|     |                                                                             | •••••  |
|     |                                                                             |        |
| •   |                                                                             | •••••  |
|     |                                                                             |        |

| <b>(b)</b> | Hence | solve | the | equation |
|------------|-------|-------|-----|----------|
|            |       |       |     |          |

| 3 | cos ' | $2\theta +$ | 2.cost | $(2\theta -$ | 60°  | = 2.5 |
|---|-------|-------------|--------|--------------|------|-------|
| J | COS   | 20 I        | 2 CO3  | 20           | UU , | , — 2 |

| for $0^{\circ} < \theta < 180^{\circ}$ . | [4] |
|------------------------------------------|-----|
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |
|                                          |     |

| 7 (a) | Use the substitution $u = \cos x$ to show that                       |      |
|-------|----------------------------------------------------------------------|------|
|       | $\int_0^{\pi} \sin 2x  e^{2\cos x}  dx = \int_{-1}^1 2u e^{2u}  du.$ | [4]  |
|       |                                                                      | •••• |
|       |                                                                      | •••• |
|       |                                                                      | •••• |
|       |                                                                      | •••• |
|       |                                                                      |      |
|       |                                                                      |      |
|       |                                                                      | •••• |
|       |                                                                      | •••• |
|       |                                                                      | •••• |
|       |                                                                      | •••• |
|       |                                                                      | •••• |
|       |                                                                      |      |
|       |                                                                      | •••• |
|       |                                                                      | •••• |
|       |                                                                      | •••• |
|       |                                                                      | •••• |
|       |                                                                      | •••• |
|       |                                                                      | •••• |
|       |                                                                      |      |

| [- | $\cos x  \mathrm{d}x.$ | the exact value of $\int_0^{\pi} s$ |
|----|------------------------|-------------------------------------|
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |
|    |                        |                                     |

| Ω | 7D1 '11         | 1      | . C .1     | 1.00       | 4. 1    |         |
|---|-----------------|--------|------------|------------|---------|---------|
| 8 | The variables x | าลทศ พ | Safisty fr | ne differe | าบาลเลเ | าบลยากท |
|   |                 |        |            |            |         |         |

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2 + 4}{x(y+4)}$$

for x > 0. It is given that x = 4 when  $y = 2\sqrt{3}$ .

| Solve the differential equation to obtain the value of $x$ when $y = 2$ . | [8]  |
|---------------------------------------------------------------------------|------|
|                                                                           | •••• |
|                                                                           | •••• |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |
|                                                                           |      |

**9** The lines l and m have equations

*l*: 
$$\mathbf{r} = a\mathbf{i} + 3\mathbf{j} + b\mathbf{k} + \lambda(c\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}),$$
  
*m*:  $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} + \mu(2\mathbf{i} - 3\mathbf{j} + \mathbf{k}).$ 

Relative to the origin O, the position vector of the point P is  $4\mathbf{i} + 7\mathbf{j} - 2\mathbf{k}$ .

| Given ina | t <i>l</i> is perpen | idicular to | m and tha | it I lies of | i t, iiid tiid | e values of | the cons | tants $a, b$ and |
|-----------|----------------------|-------------|-----------|--------------|----------------|-------------|----------|------------------|
| •••••     |                      |             | •••••     |              |                |             | •••••    |                  |
| •••••     |                      | •••••       |           | •••••        | •••••          |             | •••••    |                  |
| •••••     |                      |             |           |              |                |             | •••••    |                  |
|           |                      |             |           |              |                |             |          |                  |
| •••••     |                      |             | •••••     |              |                | •••••       |          |                  |
|           |                      |             |           |              |                |             |          |                  |
|           |                      |             | •••••     |              | •••••          |             |          |                  |
| •••••     |                      | •••••       | •••••     | •••••        | •••••          |             | •••••    |                  |
|           |                      |             |           |              |                |             |          |                  |
| •••••     |                      |             | •••••     |              | •••••          |             |          |                  |
| •••••     |                      |             | •••••     |              | •••••          |             |          |                  |
|           |                      |             | •••••     |              |                |             |          |                  |
| •••••     |                      |             | •••••     |              |                |             |          |                  |
| •••••     |                      | •••••       | ••••      |              | •••••          |             | •••••    |                  |
| •••••     |                      | •••••       | •••••     |              | •••••          |             | •••••    |                  |
|           |                      |             |           |              |                |             |          |                  |
|           |                      |             |           |              |                |             |          |                  |
| •••••     |                      |             | ••••      |              |                |             |          |                  |
|           |                      |             |           |              |                |             |          |                  |
|           |                      |             |           |              |                |             |          |                  |

| Find the position vector of $R$ . |       |        |  |
|-----------------------------------|-------|--------|--|
|                                   |       |        |  |
|                                   |       |        |  |
|                                   | ••••• |        |  |
|                                   |       | •••••  |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   | ••••• | •••••• |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   | ••••• | •••••• |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   | ••••• |        |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   | ••••• | •••••• |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   |       |        |  |
|                                   |       |        |  |

| 10 | Let $f(x) =$      | $21 - 8x - 2x^2$                           |  |  |  |  |
|----|-------------------|--------------------------------------------|--|--|--|--|
| 10 | Let $\Gamma(x) =$ | $\frac{21 - 8x - 2x^2}{(1 + 2x)(3 - x)^2}$ |  |  |  |  |

| (a) | Express $f(x)$ in partial fractions. | [5] |
|-----|--------------------------------------|-----|
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |
|     |                                      |     |

| ••• |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
|-----|-------|--------|-----------------------------------------|--------|-------|--------|-------------|-------|-----------------------------------------|-----------------------------------------|---------------|-------|---------------|-----------------------------------------|-------|--------|-------|-------|-----------------------------------------|-----|
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
| ••• |       | •••••  | • • • • • • • • • • • • • • • • • • • • | •••••  | ••••• |        | •••••       | ••••• | • • • • • • •                           | •••••                                   | •••••         | ••••• | •••••         | • • • • • • •                           | ••••• | •••••  | ••••• | ••••• | • • • • • • • • • • • • • • • • • • • • | ••• |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
| ••• | ••••• |        |                                         | •••••  | ••••• |        |             | ••••• | • • • • • • • • • • • • • • • • • • • • | •••••                                   |               |       | •••••         | • • • • • • •                           |       |        |       |       | •••••                                   | ••• |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
| ••• | ••••• | •••••• | ••••••                                  | •••••  | ••••• | •••••• | •••••       | ••••• | •••••                                   | •••••                                   | •••••         | ••••• | •••••         | •••••                                   | ••••• | •••••• | ••••• | ••••• | ••••••                                  | ••• |
| ••• |       |        |                                         |        | ••••• |        |             | ••••• |                                         |                                         |               |       |               | •••••                                   |       |        | ••••• |       |                                         | ••• |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
| ••• | ••••• | •••••  | • • • • • • • • •                       | •••••  | ••••• | •••••  | •••••       | ••••• | •••••                                   | •••••                                   | •••••         |       | •••••         | • • • • • • •                           | ••••• |        | ••••• | ••••• | ••••••                                  | ••• |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               | •••••                                   |       |        |       |       |                                         | ••• |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
| ••• | ••••• | •••••• | • • • • • • • • • • • • • • • • • • • • | •••••• | ••••• | •••••  | •••••       | ••••• | •••••                                   | •••••                                   | •••••         | ••••• | •••••         | •••••                                   |       | •••••  | ••••• | ••••• | ••••••                                  | ••• |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               | • • • • • • •                           |       |        |       |       |                                         |     |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
| ••• |       | •••••  | • • • • • • • • • • • • • • • • • • • • | •••••  | ••••• |        | •••••       | ••••• | •••••                                   | •••••                                   | •••••         | ••••• | •••••         | •••••                                   |       | •••••  | ••••• | ••••• | ••••••                                  | ••• |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               | • • • • • • •                           |       |        |       |       |                                         |     |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
| ••• |       | •••••  | • • • • • • • • •                       | •••••  | ••••• |        | • • • • • • | ••••• | • • • • • • •                           | •••••                                   | • • • • • •   | ••••• | •••••         | • • • • • • •                           | ••••• | •••••  | ••••• | ••••• | •••••                                   | ••• |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
| ••• |       | •••••  | • • • • • • • • • • • • • • • • • • • • | •••••  | ••••• |        |             | ••••• | •••••                                   | •••••                                   | •••••         |       | •••••         | •••••                                   |       | •••••  | ••••• | ••••• | •••••                                   | ••• |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
| ••• |       | •••••  | • • • • • • • • • • • • • • • • • • • • | •••••  | ••••• |        |             | ••••• | •••••                                   | •••••                                   | •••••         |       | •••••         | •••••                                   |       | •••••  | ••••• | ••••• | •••••                                   | ••• |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
| ••• | ••••• | •••••  | ••••••                                  | •••••  | ••••• |        | •••••       | ••••• |                                         | •••••                                   | •••••         | ••••• | •••••         | •••••                                   | ••••• | •••••  | ••••• | ••••• | •••••                                   | ••• |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               | • • • • • • •                           |       |        |       |       |                                         |     |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |
| ••• |       | •••••  | • • • • • • • • • • • • • • • • • • • • | •••••  | ••••• |        |             | ••••• | • • • • • • •                           | •••••                                   | • • • • • • • |       | • • • • • • • | • • • • • • • • • • • • • • • • • • • • | ••••• | •••••  | ••••• |       | •••••                                   | ••• |
| ••• |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               | • • • • • • •                           |       |        |       |       |                                         | ••• |
| •   |       |        |                                         |        | .,    |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         | •   |
| ••• |       | •••••  |                                         | •••••  | ••••• |        |             | ••••• |                                         | • • • • • • • • • • • • • • • • • • • • |               |       |               | •••••                                   | ••••• |        | ••••• |       |                                         | ••• |
|     |       |        |                                         |        |       |        |             |       |                                         |                                         |               |       |               |                                         |       |        |       |       |                                         |     |

| 11 | The | complex number z is defined by $z = \frac{5a - 2i}{3 + ai}$ , where a is an integer. It is given that $\arg z = -\frac{1}{4}\pi$ . |
|----|-----|------------------------------------------------------------------------------------------------------------------------------------|
|    | (a) | Find the value of $a$ and hence express $z$ in the form $x + iy$ , where $x$ and $y$ are real. [6]                                 |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |
|    |     |                                                                                                                                    |

| Express $z^3$ in the form $re^{i\theta}$ , where $r>0$ and $-\pi<\theta\leqslant\pi$ . Give the simplified exact value $r$ and $\theta$ . |                                         |                                              |                                      |                                         |                     |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|--------------------------------------|-----------------------------------------|---------------------|
| $r$ and $\theta$ .                                                                                                                        |                                         |                                              |                                      | •••••                                   |                     |
| r and θ.                                                                                                                                  |                                         |                                              |                                      |                                         |                     |
| r and θ.                                                                                                                                  |                                         |                                              |                                      |                                         |                     |
| r and θ.                                                                                                                                  |                                         |                                              |                                      |                                         |                     |
| r and θ.                                                                                                                                  |                                         |                                              |                                      |                                         |                     |
| r and θ.                                                                                                                                  | ••••••                                  | •••••                                        | •••••                                | •••••                                   |                     |
| $r$ and $\theta$ .                                                                                                                        |                                         |                                              |                                      |                                         |                     |
| $r$ and $\theta$ .                                                                                                                        |                                         |                                              |                                      |                                         |                     |
| $r$ and $\theta$ .                                                                                                                        | •••••                                   |                                              |                                      | •••••                                   |                     |
| $r$ and $\theta$ .                                                                                                                        |                                         |                                              |                                      | •••••                                   |                     |
| $r$ and $\theta$ .                                                                                                                        |                                         |                                              |                                      |                                         |                     |
| $r$ and $\theta$ .                                                                                                                        |                                         |                                              |                                      |                                         |                     |
| $r$ and $\theta$ .                                                                                                                        |                                         |                                              |                                      |                                         |                     |
| $r$ and $\theta$ .                                                                                                                        |                                         |                                              |                                      |                                         |                     |
| $r$ and $\theta$ .                                                                                                                        | •••••                                   |                                              |                                      | •••••                                   |                     |
| $r$ and $\theta$ .                                                                                                                        |                                         |                                              |                                      |                                         |                     |
| $r$ and $\theta$ .                                                                                                                        | •••••                                   | •••••                                        | •••••                                | • • • • • • • • • • • • • • • • • • • • | •••••               |
|                                                                                                                                           | Express $z^3$ in the                    | e form $re^{i\theta}$ , where $i$            | $r > 0$ and $-\pi < \theta \le$      | $\leq \pi$ . Give the simple            | plified exact value |
|                                                                                                                                           | Express $z^3$ in the $r$ and $\theta$ . | e form $re^{i\theta}$ , where $i$            | $r > 0$ and $-\pi < \theta \le$      | $\leq \pi$ . Give the sim               | plified exact valu  |
|                                                                                                                                           | Express $z^3$ in the $r$ and $\theta$ . | e form $re^{i\theta}$ , where $r$            | $r > 0$ and $-\pi < \theta \le$      | $\leq \pi$ . Give the simple            | plified exact valu  |
|                                                                                                                                           | Express $z^3$ in the $r$ and $\theta$ . | e form $re^{i\theta}$ , where $re^{i\theta}$ | $\tau > 0$ and $-\pi < \theta $      | $\leq \pi$ . Give the sim               | plified exact valu  |
|                                                                                                                                           | Express $z^3$ in the $r$ and $\theta$ . | e form $re^{i\theta}$ , where $re^{i\theta}$ | $\tau > 0$ and $-\pi < \theta \le$   | ξ π. Give the sim                       | plified exact value |
|                                                                                                                                           | Express $z^3$ in the $r$ and $\theta$ . | e form $re^{i\theta}$ , where $re^{i\theta}$ | $\tau > 0$ and $-\pi < \theta \le$   | ξ π. Give the sim                       | plified exact valu  |
|                                                                                                                                           | Express $z^3$ in the $r$ and $\theta$ . | e form $re^{i\theta}$ , where $re^{i\theta}$ | $\tau > 0$ and $-\pi < \theta \le$   | ξ π. Give the sim                       | plified exact valu  |
|                                                                                                                                           | Express $z^3$ in the $r$ and $\theta$ . | e form $re^{i\theta}$ , where $re^{i\theta}$ | $\tau > 0$ and $-\pi < \theta$       | ξ π. Give the sim                       | plified exact valu  |
|                                                                                                                                           | Express $z^2$ in the $r$ and $\theta$ . | e form $re^{i\theta}$ , where $re^{i\theta}$ | $\tau > 0$ and $-\pi < \theta \le 0$ | ξ π. Give the sim                       | plified exact valu  |
|                                                                                                                                           | r and θ.                                |                                              |                                      |                                         |                     |
|                                                                                                                                           | r and θ.                                |                                              |                                      |                                         |                     |
|                                                                                                                                           | r and θ.                                |                                              |                                      |                                         |                     |
|                                                                                                                                           | r and θ.                                |                                              |                                      |                                         |                     |
|                                                                                                                                           | r and θ.                                |                                              |                                      |                                         |                     |
|                                                                                                                                           | r and θ.                                |                                              |                                      |                                         |                     |
|                                                                                                                                           | r and θ.                                |                                              |                                      |                                         |                     |
|                                                                                                                                           | r and θ.                                |                                              |                                      |                                         |                     |
|                                                                                                                                           | r and θ.                                |                                              |                                      |                                         |                     |

## **Additional Page**

| If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown. |
|--------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |
|                                                                                                                                |

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.