

Cambridge International AS & A Level

CANDIDATE NAME								
CENTRE NUMBER					IDIDATE //BER			

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

October/November 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

BLANK PAGE

a <i>)</i>	Expand $(1 + 3x)^6$ in ascending powers of x up to, and including, the term in x^2 .	
		•••••
		••••••
		•••••
		•••••
		••••••
b)	Hence find the coefficient of x^2 in the expansion of $(1 - 7x + x^2)(1 + 3x)^6$.	
b)	Hence find the coefficient of x^2 in the expansion of $(1 - 7x + x^2)(1 + 3x)^6$.	
b)	Hence find the coefficient of x^2 in the expansion of $(1 - 7x + x^2)(1 + 3x)^6$.	
b)	Hence find the coefficient of x^2 in the expansion of $(1 - 7x + x^2)(1 + 3x)^6$.	
b)	Hence find the coefficient of x^2 in the expansion of $(1 - 7x + x^2)(1 + 3x)^6$.	
b)	Hence find the coefficient of x^2 in the expansion of $(1 - 7x + x^2)(1 + 3x)^6$.	
b)		

	wing all necessary working, determine which of the following statements is correct.	
A	The line and curve intersect only for a particular set of values of c .	
В	The line and curve intersect for all values of c .	
C	The line and curve do not intersect for any values of c .	[4]
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		

The diagram shows a cubical closed container made of a thin elastic material which is filled with water and frozen. During the freezing process the length, xcm, of each edge of the container increases at the constant rate of 0.01 cm per minute. The volume of the container at time t minutes is Vcm³.

Find the rate of increase of V when $x = 20$.	[3]

The transformation R denotes a reflection in the x-axis and the transformation T denotes a translation

4

(of ($\begin{pmatrix} 3 \\ -1 \end{pmatrix}$.	
((a)	Find the equation, $y = g(x)$, of the curve with equation $y = x^2$ after it has been transformed the sequence of transformations R followed by T.	by [2]
			•••
			•••
			•••
	(1.)		
((b)	Find the equation, $y = h(x)$, of the curve with equation $y = x^2$ after it has been transformed the sequence of transformations T followed by R.	by [2]
			· • • •
			· • • •
			•••
			· • • •
((c)	State fully the transformation that maps the curve $y = g(x)$ onto the curve $y = h(x)$.	[2]
			· • • •
			•••
			•••
			•••

5	(a)	Show	that the	equation
J	(a)	SHOW	mat mc	cquation

e equation
$$4\sin x + \frac{5}{\tan x} + \frac{2}{\sin x} = 0$$

tuli A Sili A	
may be expressed in the form $a \cos^2 x + b \cos x + c = 0$,	where a , b and c are integers to be found. [3]
Hence solve the equation $4 \sin x + \frac{5}{\tan x} + \frac{2}{\sin x} = 0$ for	$r \ 0^{\circ} \le x \le 360^{\circ}.$ [3]

The diagram shows a motif formed by the major arc AB of a circle with radius r and centre O, and the minor arc AOB of a circle, also with radius r but with centre C. The point C lies on the circle with centre O.

(a)	Given that angle $ACB = k\pi$ radians, state the value of the fraction k .
(b)	State the perimeter of the shaded motif in terms of π and r . [1]

Find the area of the shaded motif, giving your answer in terms of π , r and $\sqrt{3}$.	
	•••••
	•••••
	••••••
	••••••
	••••••
	•••••
	•••••
	•••••
	•••••
	••••••
	•••••
	•••••

BLANK PAGE

Find the third term of the progression.	

8

(a)

The diagram shows the curves with equations $y = 2(2x - 3)^4$ and $y = (2x - 3)^2 + 1$ meeting at points A and B.

By using the substitution $u = 2x - 3$ find, by calculation, the coordinates of A and B. [4]

••	
••	
••	
••	• • • • • • • • • • • • • • • • • • • •
••	• • • • • • • • • • • • • • • • • • • •
••	• • • • • • • • • • • • • • • • • • • •
••	•
••	 •••••
••	 •
••	
••	 ••••••

9	(a)	Express $4x^2 - 12x + 13$ in the form $(2x + a)^2 + b$, where a and b are constants. [2]
	The func	function f is defined by $f(x) = 4x^2 - 12x + 13$ for $p < x < q$, where p and q are constants. The stion g is defined by $g(x) = 3x + 1$ for $x < 8$.
	(b)	Given that it is possible to form the composite function gf , find the least possible value of p and the greatest possible value of q . [3]

(c)	Find an expression for $gf(x)$.	[1]
		•••••
The	e function h is defined by $h(x) = 4x^2 - 12x + 13$ for $x < 0$.	
(d)	Find an expression for $h^{-1}(x)$.	[3]
		•••••
		•••••
		•••••

10	A curve has a stationary point at $(2, -10)$ and is such that $\frac{d^2y}{dx^2} = 6x$.				
		Find $\frac{dy}{dx}$. [3]			
	(b)	Find the equation of the curve. [3]			
	(b)	Find the equation of the curve. [3]			
	(b)	Find the equation of the curve. [3]			
	(b)	Find the equation of the curve. [3]			
	(b)	Find the equation of the curve. [3]			
	(b)				

• • • • • • • • • • • • • • • • • • • •	 •••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	 •••••	•••••		• • • • • • • • • • • • • • • • • • • •	
	 ••••••	•••••		•••••	
	•	•••••		•	
• • • • • • • • • • • • • • • • • • • •					
Find the equatio	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	e crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	crosses th	ne y-axis
	 t to the curve	e at the point v	where the curve	e crosses th	ne y-axis

11

(a)

The diagram shows the circle with equation $(x-4)^2 + (y+1)^2 = 40$. Parallel tangents, each with gradient 1, touch the circle at points A and B.

Find the equation of the line AB, giving the answer in the form $y = mx + c$.	[3]

	dinates of A , given					
						•••••
••••••	,		••••••	••••••••••	••••••••••	••••••
						•••••
• • • • • • • • • • • • • • • • • • • •		•••••••••	••••••••••	••••••••••	••••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••	•••••
						• • • • • • • • • • • • • • • • •
	•••••					
			•••••		•••••	•••••
•••••			•••••	••••••		•••••
	••••					
•••••			•••••	••••••	•••••	••••••
	•••••					
Find the equa	ation of the tange	ent at A , giving	ng the answer	in the form	y = mx + c, whe	ere c i
surd form.		_	_			
•••••		•••••	•••••		•••••	•••••
••••••			•••••	••••••	•••••	•••••
	•••••					
						•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.