

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

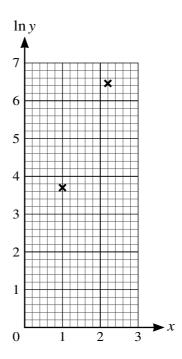
October/November 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS


- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

is equal to	<i>3</i> 0.							
							•••••	
		••••••					•••••	
		•••••	•••••	•••••	•••••	••••••	•••••	•••••
•••••		•••••	•••••	•••••	•••••		•••••	•••••
			•••••				•••••	
•••••	•••••	•••••	•••••	•	•••••	••••••	•••••	•••••
••••••		•••••	•••••		•••••	••••••	•••••	•••••
•••••		•••••	•••••	•••••	•••••	••••••	•••••	•••••
••••••		•••••	•••••	•••••	•••••	••••••	•••••	•••••
		•••••	•••••				•••••	
								•••••
••••••	•••••	••••••	•••••		••••••		•••••	•••••
•••••	•••••	••••••	•••••			•••••	• • • • • • • • • • • • • • • • • • • •	•••••

On an Argand diagram, shade the region whose points represent complex numbers z satisfying the inequalities $|z-2i| \le |z+2-i|$ and $0 \le \arg(z+1) \le \frac{1}{4}\pi$. [4]

The variables x and y are related by the equation $y = ab^x$, where a and b are constants. The diagram shows the result of plotting $\ln y$ against x for two pairs of values of x and y. The coordinates of these points are (1, 3.7) and (2.2, 6.46).

Use this information to find the values of a and b .	[4]

(a)	Express u in the Cartesian form $x + iy$, where x and y are in terms of a .	[3]
		•••••
(b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a.	[2]
(b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	[2]
(b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	[2]
(b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	[2]
(b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	[2]
(b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	[2]
(b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	[2]
(b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	
(b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	
(b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	
(b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	
(b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	
(b)	Given that $\arg u = \frac{1}{4}\pi$, find the value of a .	

5	(a)	Given	that
9	(a)	OIVCII	unat

$\sin(x+\frac{1}{6}\pi)$	$-\sin(x-$	$\frac{1}{6}\pi\big) = \cos\big($	$(x+\frac{1}{3}\pi)-c\alpha$	$\cos\left(x-\frac{1}{3}\pi\right),$		
find the exact value of $\tan x$.						[4]
	•••••	•••••	•••••	••••••	•••••	
	••••••	•••••	•••••	•••••••	•••••	
	•••••	•••••	•••••	••••••	•••••	
	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
	•••••	•••••	•••••	••••••	•••••	
		•••••	•••••			
	•••••	••••••	••••••	•••••••	•••••••	••••••
	•••••	•••••	•••••	••••••	•••••	

© UCLES 2023

	7
(b)	Hence find the exact roots of the equation
	$\sin(x + \frac{1}{6}\pi) - \sin(x - \frac{1}{6}\pi) = \cos(x + \frac{1}{3}\pi) - \cos(x - \frac{1}{3}\pi)$
	for $0 \le x \le 2\pi$.

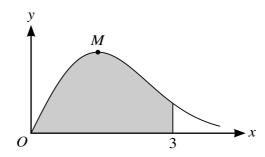
	6	The	parametric	equations	of a	curve	are
--	---	-----	------------	-----------	------	-------	-----

$$x = \sqrt{t} + 3, \qquad y = \ln t,$$

for t > 0.

(a)	Obtain a simplified expression for $\frac{dy}{dx}$	$\frac{y}{x}$ in terms of t .	[3]
(b)	Hence find the exact coordinates of is -2.	the point on the curve at which the gradi	ent of the normal [3]
			•••••

7 The variables x and θ satisfy the differential equation
--


$$\frac{x}{\tan\theta} \frac{\mathrm{d}x}{\mathrm{d}\theta} = x^2 + 3.$$

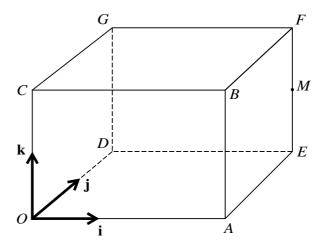
It is given that x = 1 when $\theta = 0$.

Solve the differential equation, obtaining an expression for x^2 in terms of θ .	[7]
	• • • • • • • • • • • • • • • • • • • •
	•••••
	•••••

	$\sqrt{x} = e^x - 3$	
	has only one root.	[2]
<i>a</i> .		
(b)	Show by calculation that this root lies between 1 and 2.	[2]
(b)	Show by calculation that this root lies between 1 and 2.	
(b)		
(b)		[2]
(b)		
(b)		

(c)	Show that, if a sequence of values given by the iterative formula	
	$x_{n+1} = \ln(3 + \sqrt{x_n})$	
	converges, then it converges to the root of the equation in (a).	[1]
(d)	Use the iterative formula to calculate the root correct to 2 decimal places. Give the result of eiteration to 4 decimal places.	each [3]
		•••••
		•••••
		•••••
		•••••
		•••••
		· • • • • •

The diagram shows the curve $y = xe^{-\frac{1}{4}x^2}$, for $x \ge 0$, and its maximum point M.


(a)	Find the exact coordinates of M .	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

bounded by the curve, the <i>x</i> -axis and the line $x = 3$.	
	•••••
	•••••
	•••••
	•••••
	•••••
	••••••
	•••••
	••••••
	•••••

10	Let $f(x) =$	24x + 13		
10	Let $\Gamma(X) =$	$\frac{(1-2x)(2+x)^2}{(1-2x)(2+x)^2}$		

(a)	Express $f(x)$ in partial fractions.	[5]

Hence obtain the expansion of $f(x)$ in ascending powers of x , up to and in	[5]
State the set of values of x for which the expansion in (b) is valid.	[1]

In the diagram, OABCDEFG is a cuboid in which OA = 3 units, OC = 2 units and OD = 2 units. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OD and OC respectively. M is the midpoint of EF.

(a)	Find the position vector of M .	[1]
The	position vector of P is $\mathbf{i} + \mathbf{j} + 2\mathbf{k}$.	
(b)	Calculate angle <i>PAM</i> .	[4]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.			
	•••••		
	••••••		
	•••••		
	•••••		
	•••••		
	••••••		
	•••••		
	••••••		

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.