

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

October/November 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

[1]

1 /	(a)	Cleatab	th a	amamb	of	1.4.	21
1 (a)	Sketch	tne	grapn	or $v =$	4x -	<i>Z</i> .

(b)

Solve the inequality $1 + 3x < 4x - 2 $.	[4]

	2	The	parametric	equations	of a	curve	are
--	---	-----	------------	-----------	------	-------	-----

$= e^{2-t^2},$

for $t > 0$.	
Find the gradient of the curve at the point where $t = e$, simplifying your answer.	[4]

	- ` '	ded by (x+1) th				
Find t	the values of a and b					
•••••						
•••••		•••••	••••••	•••••	•••••	••••••
•••••		•••••	•••••			
•••••	•••••		•••••	••••••	•••••	•••••
•••••						
•••••	•••••	•••••	••••••	••••••	••••••	••••••••
						•••••
•••••			•••••	••••••	•••••	
•••••	•••••	••••••••••	••••••	•••••••	•••••	••••••••
•••••						
•••••				•••••		
•••••			•••••	•••••	•••••	•••••
•••••						

(a) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z

satisfying the inequalities $ z - 4 - 3i \le 2$ as	nu ke $z \leq 3$.	
) Find the greatest value of $\arg z$ for points in	n this region.	
) Find the greatest value of arg z for points in		

Find the exact value of $\int_0^6 \frac{x(x+1)}{x^2+4} dx.$	

6	(a)	By sketching a suitable pair of graphs, show that the equation
---	-----	--

$$\cot x = 2 - \cos x$$

has one root in the interval $0 < x \le \frac{1}{2}\pi$. [2]

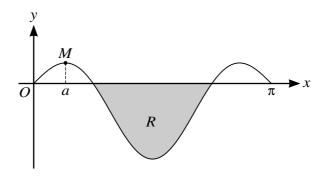
(b)	Show by calculation that this root lies between 0.6 and 0.8.	[2]
		•••••
		•••••
		•••••
		•••••
		•••••

places. Give the result of each iteration to 4 decimal places.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

•••••
•••••
•••••
•••••
 ••••••
 ••••••

(b)	Hence	solve	the	equation

$\cos 3\theta + \cos \theta \cos 2\theta = \cos^2 \theta$				
for $0^{\circ} \le \theta \le 180^{\circ}$. [5]				


It is given that $\frac{2+3ai}{a+2i} = \lambda(2-i)$, where a and λ are real constants.

Show that $3a^2 + 4a - 4 = 0$.	[4

8

•••••••••••
•••••••
•••••••••••••••••••••••••••••••••••••••

9

The diagram shows the curve $y = \sin x \cos 2x$, for $0 \le x \le \pi$, and a maximum point M, where x = a. The shaded region between the curve and the x-axis is denoted by R.

(a)	Find the value of a correct to 2 decimal places.	[5]	

•••••				•••••				•••••	
		•••••							
••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••		••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••
••••••				••••••				•••••	•••••
•••••				•••••					
	•••••					•	•		•
		•••••							•••••
••••••	•••••		• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••
••••••	•••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
		•••••		•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
	•••••								
••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••
••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••		••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••
••••••	•••••			•••••		•••••		•••••	•••••

10 The equations of the lines l and m are given by

l:
$$\mathbf{r} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
 and m : $\mathbf{r} = \begin{pmatrix} 6 \\ -3 \\ 6 \end{pmatrix} + \mu \begin{pmatrix} -2 \\ 4 \\ c \end{pmatrix}$,

where c is a positive constant. It is given that the angle between l and m is 60° .

•••••
•••••
•••••

•••••••
••••••

11 The variables x and y satisfy the differential equation

$$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} + y^2 + y = 0.$$

It is given that x = 1 when y = 1.

Solve the differential equation to obtain an expression for y in terms of x .

State what happens to the value of y when x tends to infinity. Give your answer in an exact form [1]

(b)

Additional Page

If you use the following lined page to must be clearly shown.	o complete the answer(s) to any question(s), the	question number(s)

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.