

Cambridge International AS & A Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

555200455

MATHEMATICS 9709/32

Paper 3 Pure Mathematics 3

February/March 2024

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

Find the quotient and remainder when $x^4 - 3x^3 + 9x^2 - 12x + 27$ is divided by $x^2 + 5$.	[3
	•••••
	•••••

Find the coefficient of x^2 in the expansion of $(2x-5)\sqrt{4-x}$.	[4]
	• • • • • •
State the set of values of x for which the expansion in part (a) is valid.	[1]

	given that $z = -\sqrt{3} + i$. Express z^2 in the form $w^{i\theta}$ where $v \ge 0$ and $\pi < 0 < \pi$	гэ
)	Express z^2 in the form $re^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$.	[3]
		•••••
	The complex number ω is such that $z^2\omega$ is real and $\left \frac{z^2}{\omega}\right =12$.	
	The complex number ω is such that $z^2\omega$ is real and $\left \frac{z^2}{\omega}\right =12$. Find the two possible values of ω , giving your answers in the form $Re^{i\alpha}$, where $R>0$ $-\pi<\alpha\leqslant\pi$.	anc [3]
	Find the two possible values of ω , giving your answers in the form $Re^{i\alpha}$, where $R > 0$	and
	Find the two possible values of ω , giving your answers in the form $Re^{i\alpha}$, where $R > 0$	anc [3]
	Find the two possible values of ω , giving your answers in the form $Re^{i\alpha}$, where $R > 0$	[3]
	Find the two possible values of ω , giving your answers in the form $Re^{i\alpha}$, where $R>0$ $-\pi<\alpha\leqslant\pi$.	[3]
	Find the two possible values of ω , giving your answers in the form $Re^{i\alpha}$, where $R>0$ $-\pi<\alpha\leqslant\pi$.	[3]
	Find the two possible values of ω , giving your answers in the form $Re^{i\alpha}$, where $R>0$ $-\pi<\alpha\leqslant\pi$.	[3]
	Find the two possible values of ω , giving your answers in the form $Re^{i\alpha}$, where $R>0$ $-\pi<\alpha\leqslant\pi$.	[3]
	Find the two possible values of ω , giving your answers in the form $Re^{i\alpha}$, where $R>0$ $-\pi<\alpha\leqslant\pi$.	[3]
	Find the two possible values of ω , giving your answers in the form $Re^{i\alpha}$, where $R>0$ $-\pi<\alpha\leqslant\pi$.	[3]
	Find the two possible values of ω , giving your answers in the form $Re^{i\alpha}$, where $R>0$ $-\pi<\alpha\leqslant\pi$.	[3]
	Find the two possible values of ω , giving your answers in the form $Re^{i\alpha}$, where $R>0$ $-\pi<\alpha\leqslant\pi$.	[3]
	Find the two possible values of ω , giving your answers in the form $Re^{i\alpha}$, where $R>0$ $-\pi<\alpha\leqslant\pi$.	[3]

4 The positive numbers p and q are such that

$ \ln\left(\frac{p}{q}\right) = a $	and	$\ln(q^2p) = b$
-------------------------------------	-----	-----------------

Express $\ln(p^7q)$ in terms of a and b.	[4]

5

5	(a)	On a sketch of an Argand diagram, shade the region whose points represent complex numbers satisfying the inequalities $ z-4-2i \le 3$ and $ z \ge 10-z $.	s <i>z</i> [4]
	(b)	Find the greatest value of $\arg z$ for points in this region.	[2]
	(b)	Find the greatest value of arg z for points in this region.	
	(b)		

The equation of a curve is $2y^2 + 3xy + x = x^2$.

	••
	••
	•••
	••
	••
	•••

Hence show that the curve does not have a tangent that is parallel to the x-axis.	[3
	••••••
	••••••
	•••••
	•••••

7

(a)

The diagram shows the curve $y = xe^{2x} - 5x$ and its minimum point M, where $x = \alpha$.

Show that α satisfies the equation $\alpha = \frac{1}{2} \ln \left(\frac{5}{1 + 2\alpha} \right)$. [3]

•	
٠	
٠	
٠	
ľ	Use an iterative formula based on the equation in part (a) to determine α correct to 2 declaces. Give the result of each iteration to 4 decimal places.
ŀ	races. Give the result of each iteration to 4 decimal places.
•	
•	

the exact value of R and give α correct to 3 decimal places.	
	,
	•••••

© UCLES 2024

(b)) Henc	e solv	e the	equation

$6\sin\frac{1}{2}\theta + 4\sqrt{2}\cos\left(\frac{1}{2}\theta + \frac{1}{4}\pi\right) = 3$	
for $-4\pi < \theta < 4\pi$.	[5

Relative to the origin O, the position vectors of the points A, B and C are given by

9

Show that <i>OABC</i> is a rectangle.	

	•••••
	•••••

10 Let $f(x) = \frac{36a^2}{(2a+x)(2a-x)(5a-2x)}$, where a is a positive constant.

•••	•••••
•••	
•	••••••
	•••••
	•••••
•••	/

are integers and q and s are p	rime numbers.	[5

11	The	variables	y and	θ	satisfy	the	differential	equ	ation

differential equation
$$(1+y)(1+\cos 2\theta)\frac{dy}{d\theta} = e^{3y}.$$

Solve the differential equation and find the exact value of tanθ when y = 1. [9]	It is given that $y = 0$ when $\theta = \frac{1}{4}\pi$.	
	Solve the differential equation and find the exact value of $\tan \theta$ when $y = 1$.	[9]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

Additional page

If you use the following page to complete the answer to any question, the question number must be closhown.	early
	•••••
	•••••

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.