

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

8671641646

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

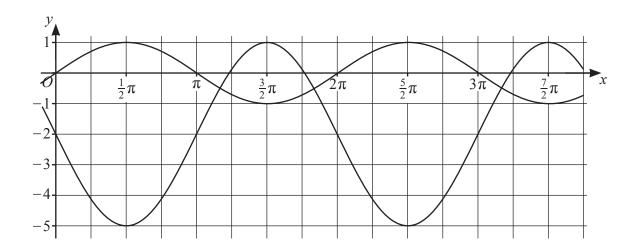
May/June 2024

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS


- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

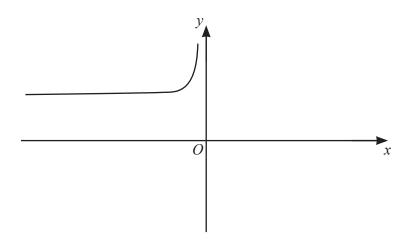
- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

	Express $3y^2 - 12y - 15$ in the form $3(y+a)^2 + b$, where a and b are constants.	
(b)	Hence find the exact solutions of the equation $3x^4 - 12x^2 - 15 = 0$.	
(0)		
(6)		

The diagram shows two curves. One curve has equation $y = \sin x$ and the other curve has equation y = f(x).

(a)	In order to transform the curve $y = \sin x$ to the curve $y = f(x)$, the curve $y = \sin x$ is first reflected in the x-axis.
	Describe fully a sequence of two further transformations which are required. [4]
(b)	Find $f(x)$ in terms of $\sin x$. [2]

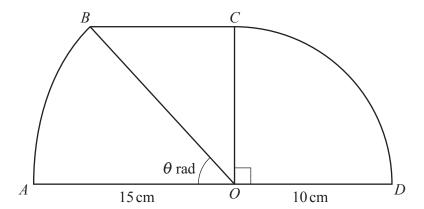

ne (coefficient of x^3 in the expansion of $(3 + ax)^6$ is 160.	
.)	Find the value of the constant a .	
		••••••
		••••••
		•••••
		•••••

© UCLES 2024

The equation of a curve is y = f(x), where $f(x) = (2x-1)\sqrt{3x-2} - 2$. The following points lie on the

) F	ind the value of k.	. Give your an	swer correct	to 5 decimal p	laces.		
••							
ne ta	ble shows the grad	dients of the c	hords <i>AB</i> , <i>AC</i>	C, AD and AF .			
	Chord	AB	AC	AD	AE	AF	
	Gradient of chord	6.2501	6.2511	6.2608		7.2288	
) E	ind the gradient of	f the chord 4B	Give your s	answer correct	to A decim	al places	
•••							
 	Deduce the value o	of f'(2) using t	the values in	the table.			
 	Deduce the value o	of f'(2) using t	the values in	the table.			
 	Deduce the value o	of f'(2) using t	the values in	the table.			
 	Deduce the value o	of f'(2) using t	the values in	the table.			
 	Deduce the value o	of f'(2) using t	the values in	the table.			

a)	Prove the identity $\frac{\sin^2 x - 1}{1 + 1}$	$\cos x = -\cos x$	λ.	
		•••••		
h)	Hence solve the equation	$\frac{\sin^2 x - \cos x - 1}{\sin^2 x - \cos x - 1}$	$= \frac{1}{2} \text{ for } 0^{\circ} \le x \le 360^{\circ}$	
b)	Hence solve the equation	$\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} =$	$= \frac{1}{4} \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	
b)	Hence solve the equation	$\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} =$	$= \frac{1}{4} \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	
b)	Hence solve the equation	$\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} =$	$= \frac{1}{4} \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	
b)	Hence solve the equation	$\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} =$	$= \frac{1}{4} \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	
b)	Hence solve the equation	$\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} =$	$= \frac{1}{4} \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	
b)	Hence solve the equation	$\frac{\sin^2 x - \cos x - 1}{2 + 2\cos x} =$	$= \frac{1}{4} \text{ for } 0^{\circ} \leqslant x \leqslant 360^{\circ}.$	
b)				
b)				
b)				

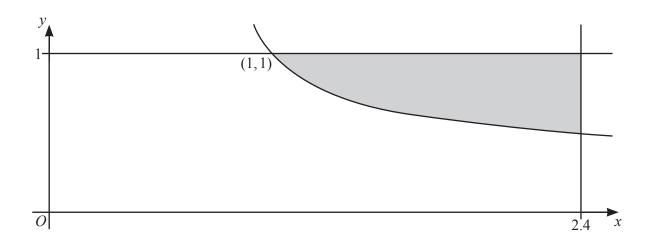

The function f is defined by $f(x) = \frac{2}{x^2} + 4$ for x < 0. The diagram shows the graph of y = f(x).

(a)	On this diagram	, sketch the graph of	$v = f^{-1}(x)$) Show any	v relevant miri	ror line	[2]
(4)	On this diagram	, sketen the graph of	y = (A	j. Dilow uii	y i cic valit illili	or mic.	-

(b)	Find an expression for $f^{-1}(x)$.	[3]

(c)	Solve the equation $f(x) = 4.5$.	[1

(d) Explain why the equation
$$f^{-1}(x) = f(x)$$
 has no solution. [1]

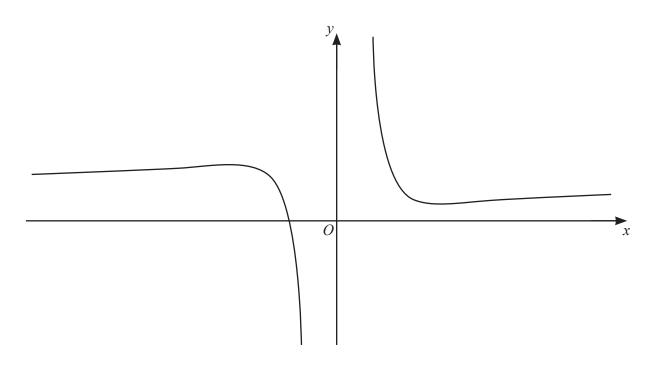

In the diagram, AOD and BC are two parallel straight lines. Arc AB is part of a circle with centre O and radius 15 cm. Angle $BOA = \theta$ radians. Arc CD is part of a circle with centre O and radius 10 cm. Angle $COD = \frac{1}{2}\pi$ radians.

(a)	Show that $\theta = 0.7297$, correct to 4 decimal places.	[1]
(b)	Find the perimeter and the area of the shape <i>ABCD</i> . Give your answers correct to figures.	3 significant [7]

 ••••
•••••
•••••
•••••
•••••
•••••
•••••

Find the value of the tenth term of the progression.	
	······

I	Find the sum to infinity of the progression.	


The diagram shows part of the curve with equation $y = \frac{1}{(5x-4)^{\frac{1}{3}}}$ and the lines x = 2.4 and y = 1. The curve intersects the line y = 1 at the point (1,1).

Find the exact volume of the solid generated when the shaded region is rotated through 360° ab e-axis.	out the [6]
	•••••
	•••••

Find the two pos the tangent touch	sible values of <i>m</i> are the circle.	and, for each valu	the of m , find the co	ordinates of the poi	nt at w
•••••			•••••		
	•••••	•••••		•••••	
	•••••	•••••			
	•••••	•••••		•••••	
	•••••	•••••			,
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••		

A function is defined by $f(x) = \frac{4}{x^3} - \frac{3}{x} + 2$ for $x \ne 0$. The graph of y = f(x) is shown in the diagram.

Find the set of values of x for which $f(x)$ is decreasing.	[5]

Find the area of the tri	angle. Give your answer correct to 3 significant figures.	
••••••		
		,
		• • • • • • • • • • • • • • • • • • • •

© UCLES 2024

Additional page

If you use the following page to complete the answer to any question, the questions shown.	on number must be clearly

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.