

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS

May/June 2024

9709/13

1 hour 50 minutes

Paper 1 Pure Mathematics 1

You must answer on the question paper.

You will need: List of formulae (MF19)

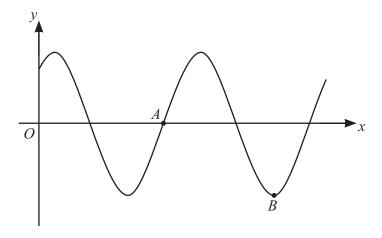
INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

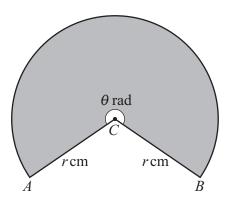

2 BLANK PAGE

© UCLES 2024

1 Find the coefficient of x^2 in the expansion of

$(2-5x)(1+3x)^{10}$.	[4]
	•••••
 	••••••
	••••••
 	•••••

The diagram shows the curve $y = k\cos(x - \frac{1}{6}\pi)$ where k is a positive constant and x is measured in radians. The curve crosses the x-axis at point A and B is a minimum point.


Find the coordinates of A and B .	[3]
	•••••

(b) Find the exact value of t that satisfies the equation

$$3\sin^{-1}(3t) + 2\cos^{-1}\left(\frac{1}{2}\sqrt{2}\right) = \pi.$$
 [2]

* 0019656641005 *

5

The diagram shows a sector of a circle with centre C. The radii CA and CB each have length r cm and the size of the reflex angle ACB is θ radians. The sector, shaded in the diagram, has a perimeter of 65 cm and an area of 225 cm².

(a)	Find the values of r and θ .	[4]
		••••••
		••••••
		•••••••••••
(b)	Find the area of triangle ACB.	[2]

* (0019656641006 *	
4 (a)	Show that the equation $\cos \theta (7 \tan \theta - 5 \cos \theta) = 1$ can be written in the for $a \sin^2 \theta + b \sin \theta + c = 0$, where a, b and c are integers to be found.	rm [3]
		••••
		•••
(b)	Hence solve the equation $\cos 2x (7 \tan 2x - 5 \cos 2x) = 1$ for $0^{\circ} < x < 180^{\circ}$.	
		· • • •

DO NOT WRITE IN THIS MARGIN

* 0019656641007 *

5 The equation of a curve is $y = 2x^2 - \frac{1}{2x} + 3$.

(a)	Find the coordinates of the stationary point.	,]
		•
		•
		•
		•
		•
(b)	Determine the nature of the stationary point. [2	.]
		•
		•
		•
(c)	For positive values of x , determine whether the curve shows a function that is increasing decreasing or neither. Give a reason for your answer.	2]
		•
		•
		•

6 A curve passes through the point $\left(\frac{4}{5}, -3\right)$ and is such that $\frac{dy}{dx} = \frac{-20}{(5x-3)^2}$.

(a)	Find the equation of the curve.	[4

• • • • • • • • • •	 · • • • • • • • • •	 	 	 	 	 	
• • • • • • • •	 • • • • • • • •	 	 	 	 	 	

(b)	The curve is transformed by a stretch in the x-direction with scale factor $\frac{1}{2}$ followed by a translation
	of $\binom{2}{10}$.

Find the equation of the new curve.	[3

•••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	•••••	•••••	
•••••		***************************************	•••••		• • • • • • • • • • • • • • • • • • • •

•••••	• • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • •	 • • • • • • • • • • • •	• • • • • • •
		· • • • • • • • • • •				 				 	
		· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •			 				 . .	

.....

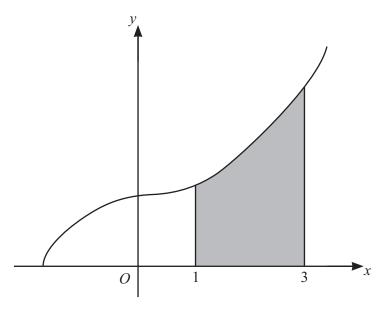
DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

(a)	Find the common difference.	2]
		•••
		•••
		•••
		•••
(b)	Find the sum of all the terms of the arithmetic progression whose values are between 25 and 10	00 5
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••

A circle with equation $x^2 + y^2 - 6x + 2y - 15 = 0$ meets the y-axis at the points A and B. The tangents to the circle at A and B meet at the point P.

Find the coordinates of <i>P</i> .	[8]


* 0019656641111 *

	•••••
	••••
© UCLES 2024	

1	1
	-1

* 0019656641112 *

9

12

The diagram shows the curve with equation $y = \sqrt{2x^3 + 10}$.

(a)	Find the equation of the tangent to the curve at the point where $x = 3$. Give your answer in the form $ax + by + c = 0$ where a , b and c are integers.	1e 5]
		••
		••
		••
		••
		••

(b) The region shaded in the diagram is enclosed by the curve and the straight lines x = 1, x = 3 and y = 0.

Find the volume of the solid obtained when the shaded region is rotated through 360° about the <i>x</i> -axis. [3]

10 The geometric progression a_1 , a_2 , a_3 , ... has first term 2 and common ratio r where r > 0. It is given that $\frac{9}{2}a_5 + 7a_3 = 8$.

(a)	Find the value of r .	[3]
		· • • • • • • • • • • • • • • • • • • •
(b)	Find the sum of the first 20 terms of the geometric progression. Give your answer corred significant figures.	ect to

(c)

© UCLES 2024

* 0019656641115 *	

Find the sum to infinity of the progression a_2 , a_5 , a_8 ,	[3]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

11 The function f is defined by $f(x) = 10 + 6x - x^2$ for $x \in \mathbb{R}$.

(a)	By completing the square, find the range of f.	[3]

The function g is defined by g(x) = 4x + k for $x \in \mathbb{R}$ where k is a constant.

Determine the coordinates of P .	
	,
	,

18

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.

* 0019656641119 *

19

BLANK PAGE

20

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

