

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/21

Paper 2 Pure Mathematics 2

May/June 2024

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

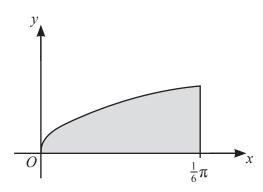
Find the <i>x</i> -coordina figures.			ct to 3 significan [3]

Find	the grad	ient of the	he curve	e at the	point	(2,1).							
						• • • • • • • • • • • • • • • • • • • •						•••••	
•••••	••••••	•••••				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •					
•••••		••••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••					•••••	
•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••	
•••••						• • • • • • • • • • • • • • • • • • • •						•••••	
						• • • • • • • • • • • • • • • • • • • •						•••••	
•••••		•••••				• • • • • • • • • • • • • • • • • • • •				•••••			
•••••			•••••			• • • • • • • • • • • • • • • • • • • •							
						• • • • • • • • • • • • • • • • • • • •						•••••	
•••••		•••••				•			• • • • • • • • • • • • • • • • • • • •	•••••			,
•••••		••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••		••••••	••••••			• • • • • • • • • • • • • • • • • • • •							,
		•••••				• • • • • • • • • • • • • • • • • • • •							
					,			,					
•••••			•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		••••••		•••••			

3	(a)	Sketch on the same diagram the graphs of $y = 3x - 8 $ and $y = 5 - x$.	[2]

)	Solve the inequality $ 3x-8 < 5-x$.	[4]

(c)	Hence determine the largest integer N satisfying the inequality $ 3e^{0.1N} - 8 < 5 - e^{0.1N}$. [2]


l	(a)	Show that $3 \tan 2\theta + \tan(\theta + 45^\circ) =$	$\tan^2\theta + 8\tan\theta + 1$	[4]
r	(a)	Show that $3 \tan 2\theta + \tan(\theta + 45^\circ) \equiv$	$1-\tan^2\theta$	[ד]
			•••••	
			•••••	
			•••••	

(b)	Hence solve the equation $3 \tan 2\theta + \tan(\theta + 45^{\circ}) = 4$ for $0^{\circ} < \theta < 180^{\circ}$.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		••••••
		•••••

dx and	d hence show the	nat the x-coord	linate of P sa	tisfies the equa	$ation x = \frac{1}{6} + \frac{1}{2}e$	2.4
•••••	••••••	••••••	•••••	••••••	•••••	•••••
••••••	•••••	•••••	•••••			•••••
•••••						•••••
•••••						
						•••••
••••••						
•••••						
•••••		•••••				
•••••						
•••••••						•••••

		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
	,		• • • • • • • • • • • • • • • • • • • •		•••••	
			•••••			
• • • • • • • • • • • • • • • • • • • •					••••••	
Use an iterativ	/e formula bas	ed on the equ	uation in part (a) to find the x-	coordinate o	of P corr
Use an iterativ	ve formula bas	ed on the eque result of ea	nation in part (a) to find the <i>x</i> -5 significant fig	coordinate oures.	of <i>P</i> corr
Use an iterativ 3 significant f	ve formula bas	ed on the eque result of ea	nation in part (ch iteration to	a) to find the <i>x</i> -5 significant fig	coordinate oures.	of P corr
Use an iterativ 3 significant f	ve formula bas	ed on the eque result of ea	uation in part (ch iteration to	a) to find the <i>x</i> -5 significant fig	coordinate oures.	of P corr
Use an iterativ 3 significant f	ve formula bas	ed on the eque result of ea	uation in part (ch iteration to	a) to find the x-5 significant fig	coordinate oures.	of P corr
Use an iterativ	ve formula basigures. Give th	ed on the eque result of ea	nation in part (ch iteration to	a) to find the <i>x</i> -5 significant fig	coordinate oures.	of P corr
Use an iterativ	ve formula bas	ed on the eque result of ea	uation in part (ch iteration to	a) to find the x-5 significant fig	coordinate oures.	of P corr
Use an iterativ	ve formula bas	ed on the eque result of ea	nation in part (ch iteration to	a) to find the x-5 significant fig	coordinate oures.	of P corr
Use an iterativ	ve formula bas	ed on the eque result of ea	uation in part (ch iteration to	a) to find the x-5 significant fig	coordinate oures.	of P corr
Use an iterativ	ve formula bas	ed on the eque result of ea	nation in part (ch iteration to	a) to find the x-5 significant fig	coordinate oures.	of P corr
Use an iterativ	ve formula bas	ed on the eque result of ea	uation in part (ch iteration to	a) to find the x-5 significant fig	coordinate oures.	of P corr
Use an iterativ	ve formula bas	ed on the eque result of ea	nation in part (a) to find the x-5 significant fig	coordinate oures.	of P corr
Use an iterativ	ve formula bas	ed on the eque result of ea	nation in part (ch iteration to	a) to find the <i>x</i> -5 significant fig	coordinate oures.	of P corr
Use an iteratival significant f	ve formula bas	ed on the eque result of ea	nation in part (a) to find the x-5 significant fig	coordinate oures.	of P corr
Use an iterativ	ve formula bas	ed on the eque result of ea	nation in part (a) to find the x-5 significant fig	coordinate oures.	of P corr
Use an iteratival significant f	ve formula bas	ed on the eque result of ea	nation in part (a) to find the x-5 significant fig	coordinate oures.	of P corr
Use an iterativ	ve formula bas	ed on the eque result of ea	nation in part (a) to find the x-5 significant fig	coordinate oures.	of P corr
Use an iterativ 3 significant f	ve formula bas	ed on the eque result of ea	nation in part (a) to find the x-5 significant fig	coordinate oures.	of P corr
Use an iteratival significant f	ve formula bas	ed on the eque result of ea	nation in part (ch iteration to	a) to find the x-5 significant fig	coordinate oures.	of P corr
Use an iterativ 3 significant f	ve formula bas	ed on the eque result of ea	nation in part (ch iteration to	a) to find the x-5 significant fig	coordinate oures.	of P corr

6

The diagram shows the curve with equation $y = \sqrt{\sin 2x + \sin^2 2x}$ for $0 \le x \le \frac{1}{6}\pi$. The shaded region is bounded by the curve and the straight lines $x = \frac{1}{6}\pi$ and y = 0.

G	Is the trapezium rule with two intervals to find an approximation to the area of the shaded regive your answer correct to 2 significant figures.
••	
••	
••	
••	
••	
••	
••	

Find the exact volume of the solid produced.	

7	The	noly	ynomial	n	(v)	\ ic	defined	h
/	The	por	ymomiai	p ((X)) IS	aemiea	υy

$$p(x) = 9x^3 + 6x^2 + 12x + k,$$

where k is a constant.

••••		••••
••••		
••••		
••••		
It i	f^{6} $p(x)$	
	is given that $\int_1^6 \frac{p(x)}{3x+2} dx = a + \ln 64$, where a is an integer.	
	is given that $\int_{1}^{\infty} \frac{1}{3x+2} dx = a + \ln 64$, where a is an integer. Indeed, where a is an integer.	
Fir		
Fir	nd the values of a and k .	
Fir	nd the values of a and k .	
Fir	nd the values of a and k .	
Fir	nd the values of a and k.	

 •••••
•••••
•••••
•••••
•••••

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.

15

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.