

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

May/June 2024

1 hour 50 minutes

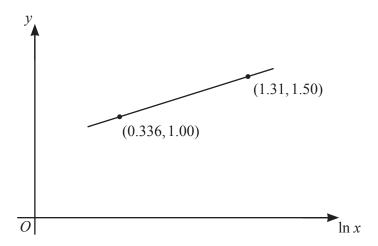
You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION


- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

coefficients.				
•••••	 	 		
	 	 •••••		
• • • • • • • • • • • • • • • • • • • •	 	 •••••	•••••	• • • • • • • • • • • • • • • • • • • •
	 	 •••••		•••••
•••••		 •••••		•••••
	 	 •••••		
• • • • • • • • • • • • • • • • • • • •	 	 •••••	•••••	• • • • • • • • • • • • • • • • • • • •
	 	 •••••		
	 	 •••••		• • • • • • • • • • • • • • • • • • • •
•••••	 	 		
	 	 •••••		•••••
•••••	 	 •••••	•••••••	•••••

Solve the equation $ln(x-5) = 7 - ln x$. Give your answer correct to 2 decimal places.	[
	•••••

3

The variables x and y satisfy the equation $a^y = bx$, where a and b are constants. The graph of y against $\ln x$ is a straight line passing through the points (0.336, 1.00) and (1.31, 1.50), as shown in the diagram.

Find the values of a and b. Give each value correct to the nearest integer.	[4]
	••••
	••••
	••••
	••••
	••••
	••••
	••••

	Express u in the form $r(\cos\theta + i\sin\theta)$, where $r > 0$ and $-\pi < \theta \le \pi$. Give the exact value and θ .	es
		•••
		• •
		• •
е	complex number v is given by $v = 5\left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right)$.	•••
	complex number v is given by $v = 5\left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right)$. Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.	••
	Express the complex number $\frac{v}{u}$ in the form $re^{i\theta}$ where $r > 0$ and $-\pi < \theta \le \pi$.	
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.	
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.	••
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.	
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.	
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.	•••
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.	•••
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.	•••
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.	•••
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.	
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.	
	Express the complex number $\frac{v}{u}$ in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $r>0$ and $-\pi<\theta\leqslant\pi$.	

Find $\frac{dy}{dx}$ and henc	e find the <i>x</i> -coord	linates of the stat	onary points of the	e curve.	
•••••		•••••			
•••••		•••••			
		•••••			

6

(a) By sketching a suitable pair of graphs, show that the equation $\csc \frac{1}{2}x = e^x - 3$ has exactly one root, denoted by α , in the interval $0 < x < \pi$.

)	Verify by calculation that α lies between 1 and 2.	
)	Verify by calculation that α lies between 1 and 2.	
)	Verify by calculation that α lies between 1 and 2.	
)	Verify by calculation that α lies between 1 and 2.	
))	Verify by calculation that α lies between 1 and 2.	
))	Verify by calculation that α lies between 1 and 2.	
)	Verify by calculation that α lies between 1 and 2.	
)		
		•••

Show that if a sequence of values in the interval $0 < x < \pi$ given by the iterative formula					
$x_{n+1} = \ln\left(\csc\frac{1}{2}x_n + 3\right)$					
converges, then it converges to α .	[1]				
	•••••				
	•••••				
Use this iterative formula with an initial value of 1.4 to determine α correct to 2 decimal places. Give the result of each iteration to 4 decimal places.	aces. [3]				
	•••••				
	•••••				
	•••••				
State the minimum number of calculated iterations needed with this initial value to determine correct to 2 decimal places.	 ne α [1]				
	•••••				
	$x_{n+1} = \ln(\csc \frac{1}{2}x_n + 3)$ converges, then it converges to α . Use this iterative formula with an initial value of 1.4 to determine α correct to 2 decimal places. Give the result of each iteration to 4 decimal places.				

BLANK PAGE

[4]

(a) On a single Argand diagram sketch the loci given by the equations |z-3+2i|=2 and

|w-3+2i| = |w+3-4i| where z and w are complex numbers.

7

Hence find	the least value	z = z - w for	points on the	ese loci. Give y	our answer i	n an exac
Hence find	the least value	z = z - w for	points on the	ese loci. Give y	our answer i	n an exac
Hence find	the least value	$z ext{ of } z - w ext{ for }$	points on the	ese loci. Give y	our answer i	n an exac
Hence find	the least value	$e ext{ of } z-w ext{ for }$	points on the	ese loci. Give y	our answer i	n an exac
Hence find	the least value	e of z-w for	points on the	ese loci. Give y	our answer i	n an exac
				ese loci. Give y		

8 Use the substitution $u = 1 - \sin x$ to find the exact value of

$$\int_{\pi}^{\frac{3}{2}\pi} \frac{\sin 2x}{\sqrt{1-\sin x}} \, \mathrm{d}x.$$

Give your answer in the form $a+b\sqrt{2}$ where a and b are rational numbers to be determined.	[7]
	•••••
	•••••
	•••••
	•••••
	•••••

9	The equations	of two	straight	lines 1	and 1	are
7	The equations	or two	Straight	IIIICS ι_1	and ι_{γ}	arc

$$l_1 \colon \mathbf{r} = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k} + \lambda(2\mathbf{i} - \mathbf{j} + a\mathbf{k}) \quad \text{and} \quad l_2 \colon \mathbf{r} = -\mathbf{i} - \mathbf{j} - \mathbf{k} + \mu(3\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}),$$

where a is a constant.

The lines \boldsymbol{l}_1 and \boldsymbol{l}_2 are perpendicular.

(a)	Show that $a = 4$.	[1]
The	e lines l_1 and l_2 also intersect.	
	Find the position vector of the point of intersection.	[4]

The point A has position vector $-5\mathbf{i} + \mathbf{j} - 9\mathbf{k}$.

(c) Show that A lies on l_1 . [2] The point B is the image of A after a reflection in the line l_2 . (d) Find the position vector of B. [2]

10	(a)	Given that $2x = \tan y$, show that $\frac{dy}{dx} = \frac{2}{1 + 4x^2}$.	[3]
		$dx = 1 + 4x^2$	
			•••••
			•••••
			••••••
			•••••••••
		√3	
	(b)	Hence find the exact value of $\int_{1}^{\frac{\sqrt{3}}{2}} x \tan^{-1}(2x) dx$.	[7]
	(b)	Hence find the exact value of $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x \tan^{-1}(2x) dx$.	[7]
	(b)	Hence find the exact value of $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x \tan^{-1}(2x) dx$.	[7]
	(b)	Hence find the exact value of $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x \tan^{-1}(2x) dx$.	[7]
	(b)	Hence find the exact value of $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} x \tan^{-1}(2x) dx$.	
	(b)		

	 	•••••	•••••	
	 	•••••		
•••••	 •••••	••••••	••••••	
	 	•••••		

In a field there are 300 plants of a certain species, all of which can be infected by a particular disease. At

(a)	Show that x and t satisfy the differential equation	
	$1495 \frac{\mathrm{d}x}{\mathrm{d}t} = x (300 - x).$	[2]
(b)	Using partial fractions, solve the differential equation and obtain an expressio single logarithm involving x .	n for t in terms of [9]

 •••••
•••••
•••••
•••••
•••••

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.