

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/33

Paper 3 Pure Mathematics 3

May/June 2024

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

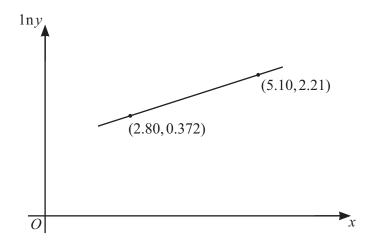
- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

	* 0019655419902 *
1	Solve the equation $8^{3-6x} = 4 \times 5^{-2x}$. Give your answer correct to 3 decimal places. [4]

* 0019655419903 *

Find the exact coordinates of the stationary point of the curve $y = e^{2x} \sin 2x$ for $0 \le x \le \frac{1}{2}\pi$. [5]


3 The square roots of 24-7i can be expressed in the Cartesian form x+iy, where x and y are real and exact.

By first forming a quartic equation in x or y , find the square roots of $24 - 71$ in exact Cartesian form. [5]

* 0019655419905 *

5

4

The variables x and y satisfy the equation $ky = e^{cx}$, where k and c are constants. The graph of $\ln y$ against x is a straight line passing through the points (2.80,0.372) and (5.10,2.21), as shown in the diagram.

Find the values of k and c . Give each value correct to 2 significant figures.	[4]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

Expres	$\sin \frac{6x^2 - 2}{(x - 1)(2x^2 + 1)}$	$\frac{x+2}{2x+1}$ in	partial f	ractions								[
••••												
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••
•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		••••••
•••••	•••••	•••••							•••••			
• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••
•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		••••••
•••••	•••••	•••••							•••••			
•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	••••••
•••••		•••••			•••••	•••••	•••••		•••••			
	•••••	•••••	•••••	•••••	•••••				•••••			
	•				•	•	•	••••••	•	•		•
•••••	•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••••	•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••		•••••
		•••••										
•••••	••••••	•••••	•••••	••••••	••••••	•••••	•••••	••••••	••••••	••••••	••••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
		•••••					•••••	•••••	•••••	•••••		

6 (a) On an Argand diagram shade the region whose points represent complex numbers z which satisfy both the inequalities $|z-4-3i| \le 2$ and $\arg(z-2-i) \ge \frac{1}{3}\pi$. [5]

(b) Calculate the greatest value of arg z for points in this region. [2]

7 Let $f(x) = 8x^3 + 54x^2 - 17x - 21$.

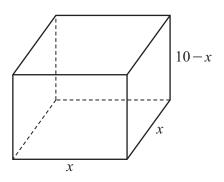
quotient when $f(x)$ is divided by $x+7$.	[2]
quotient when $f(x)$ is divided by $x + y$.	[2.
	••••••

(c) Hence solve the equation

 $8\cos^{3}\theta + 54\cos^{2}\theta - 17\cos\theta - 21 = 0,$

for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.	[3]
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••

DO NOT WRITE IN THIS MARGIN


Express $3\cos 2x - \sqrt{3}\sin 2x$ in the form $R\cos(2x+\alpha)$, where $R>0$ and $0<$ exact values of R and α .	$\alpha < \frac{1}{2}n$. Give the [3]

(b)

Hence find the exact value of $\int_0^{\frac{1}{12}\pi} \frac{3}{\left(3\cos 2x - \sqrt{3}\sin 2x\right)^2} dx$, simplifying your answer. [5]

(

A container in the shape of a cuboid has a square base of side x and a height of (10-x). It is given that x varies with time, t, where t > 0. The container decreases in volume at a rate which is inversely proportional to t.

When $t = \frac{1}{10}$, $x = \frac{1}{2}$ and the rate of decrease of x is $\frac{20}{37}$.

(a) Show that x and t satisfy the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{-1}{2t(20x - 3x^2)}.$$
 [5]

DO NOT WRITE IN THIS MARGIN

	••••••
L	© UCLES 2024

	001965542001	-	
(b)	Solve the	differential	equation, o

Solve the differential equation, obtaining an expression for t in terms of x .	[6]
	•••••
	•••••
	•••••

10 The equations of two straight lines are

$$\mathbf{r} = \mathbf{i} + \mathbf{j} + 2a\mathbf{k} + \lambda(3\mathbf{i} + 4\mathbf{j} + a\mathbf{k})$$
 and $\mathbf{r} = -3\mathbf{i} - \mathbf{j} + 4\mathbf{k} + \mu(-\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}),$

14

where a is a constant.

of a.									
								•••••	
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	••••••
								•••••	
••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•	••••••	••••••	••••••
	•••••				• • • • • • • • • • • • • • • • • • • •	•••••			
• • • • • • • • • • • • • • • • • • • •	•••••			•••••	• • • • • • • • • • • • • • • • • • • •			•••••	•••••
	•••••						•••••	•••••	•••••
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	•••••
• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •				
• • • • • • • • • • • • • • • • • • • •	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••
	•••••				• • • • • • • • • • • • • • • • • • • •	•••••			
								•••••	•••••
	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
• • • • • • • • • • • • • • • • • • • •								•••••	

Ц		
×		
אָפ		
₹		
<u>က</u>		
픋		
Z		
Щ		
2		
≤ -		
DO NOT WRITE IN THIS MARGIN		
ó		
Ó		

i	Given instead that the lines intersect, find the value of a and the position intersection.	-
•		
•		
		•••••
•		•••••
		•••••
•		
•		
		•••••
•		
•		
•		
•		

© UCLES 2024

11 Use the substitution $2x = \tan \theta$ to find the exact value of

$$\int_0^{\frac{1}{2}} \frac{12}{\left(1 + 4x^2\right)^2} \, \mathrm{d}x \ .$$

DO NOT WRITE IN THIS MARGIN

Give your answer in the form $a+b\pi$, where a and b are rational numbers.	[9]
	••••••

* 0019655420017 *

	•••	•••	••	•••	•		••	•				• •			•		•		•	• •	•	 	
UCI •	LES		02		•	••	••	•	••	• •	••	• •	••	••	•	••	•	••			THE SECOND		••

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.

© UCLES 2024

19

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

