

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/31

Paper 3 Pure Mathematics 3

October/November 2024

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

BLANK PAGE

The polynomial $4x^3 + ax^2 + 5x + b$, where a and b are constants, is denoted by p(x). It is given that (2x+1) is a factor of p(x). When p(x) is divided by (x-4) the remainder is equal to 3 times the remainder when p(x) is divided by (x-2).

Find the values of a and b .	[5]

	 0008	 					
 			1				

Find the exact value of $\int_1^2 x^2 \ln 3x dx$. Give your answer in the form $a \ln b + c$, w	here a and c are rational
and b is an integer.	[5]

3 The equation of a curve is $ln(x+y) = 3x^2y$.

Find the gradient of the curve at the point $(1,0)$.	[4]
	••••••
	••••••
	•••••

	Show that $\sec^4\theta - \tan^4\theta \equiv 1 + 2\tan^2\theta$. [3]
,	

•••••	•••••		•••••	•••••	•••••	•••••		•••••
			•••••	•••••				•••••
•	••••••	•	••••••	••••••	••••••	••••••		••••••
	•••••		•••••	•••••	•••••	•••••		•••••
				•••••	•••••	•••••		
					•••••			
	•••••	•••••	•••••	•••••	•••••	•••••		•••••
				•••••	•••••	•••••		
•	•••••	•	•••••		•••••	•		•••••
••••••	•••••		•••••	•••••	•••••	•••••		•••••
			•••••	•••••		•••••		•••••
	•••••		•••••	•••••	•••••	•••••		•••••
			•••••					•••••
•••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••	•••••
•••••			•••••		••••••	•••••		•••••

5 (a) By sketching a suitable pair of graphs, show that the equation $2 + e^{-0.2x} = \ln(1+x)$ has only one root.

(b) Show by calculation that this root lies between 7 and 9. [2]

(c) Use the iterative formula

$$x_{n+1} = \exp(2 + e^{-0.2x_n}) - 1$$

to determine the root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.

$[\exp(x) \text{ is an alternative notation for } e^x.]$	[3]

The diagram shows the curve $y = \sin 2x(1 + \sin 2x)$, for $0 \le x \le \frac{3}{4}\pi$, and its minimum point M. The shaded region bounded by the curve that lies above the x-axis and the x-axis itself is denoted by R.

(a)	Given that the x-coordinate of M lies in the interval $\frac{1}{2}\pi < x < \frac{3}{4}\pi$, find the exact coordinates of M. [4]

* 0000800000011 *

))	Find the exact area of the region R .

Let $f(x) = \frac{5x^2 + 8x + 5}{(1 + 2x)(2 + x^2)}$.

Express $f(x)$ in partial fractions.	[5]

* 0008000	00013 *	

1	3	3

Hence find the coefficient of x^3 in the expansion of $f(x)$.

Show that $\left(a-\frac{1}{2}\right)^2+b^2=\frac{1}{4}$, where a and b are the functions of y found in part (a).		Given that $z = 1 + yi$ and that y is a real number, express $\frac{1}{z}$ in the form $a + bi$, where a an functions of y.	14
			• • • •
			• • • • •
			• • • •
			• • • •
			••••
			• • • •
			• • • •
)	Show that $\left(a - \frac{1}{2}\right)^2 + b^2 = \frac{1}{4}$, where a and b are the functions of y found in part (a).	••••
	o)	Show that $\left(a - \frac{1}{2}\right)^2 + b^2 = \frac{1}{4}$, where <i>a</i> and <i>b</i> are the functions of <i>y</i> found in part (a).	
	o)	Show that $\left(a - \frac{1}{2}\right)^2 + b^2 = \frac{1}{4}$, where <i>a</i> and <i>b</i> are the functions of <i>y</i> found in part (a).	
	o)	Show that $\left(a - \frac{1}{2}\right)^2 + b^2 = \frac{1}{4}$, where a and b are the functions of y found in part (a).	
	D)	Show that $\left(a - \frac{1}{2}\right)^2 + b^2 = \frac{1}{4}$, where a and b are the functions of y found in part (a).	
	0)	Show that $\left(a - \frac{1}{2}\right)^2 + b^2 = \frac{1}{4}$, where a and b are the functions of y found in part (a).	
	0)	Show that $\left(a - \frac{1}{2}\right)^2 + b^2 = \frac{1}{4}$, where a and b are the functions of y found in part (a).	
)	Show that $\left(a - \frac{1}{2}\right)^2 + b^2 = \frac{1}{4}$, where a and b are the functions of y found in part (a).	
	0)		
	0)		
	0)		
	o)		
	0)		••••
	()		••••
	0)		
	0)		
	D)		
	9)		

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 •	•••••

(c) On a single Argand diagram, sketch the loci given by the equations Re(z) = 1 and $\left|z - \frac{1}{2}\right| = \frac{1}{2}$, where z is a complex number. [3]

(d) The complex number z is such that Re(z) = 1. Use your answer to part (b) to give a geometrical description of the locus of $\frac{1}{z}$. [1]

The position vector of point A relative to the origin O is $\overrightarrow{OA} = 8\mathbf{i} - 5\mathbf{j} + 6\mathbf{k}$. The line *l* passes through A and is parallel to the vector $2\mathbf{i} + \mathbf{j} + 4\mathbf{k}$.

(a)	State a vector equation for <i>l</i> .	[2]
		•••
		•••
		•••
		•••
(b)	The position vector of point <i>B</i> relative to the origin <i>O</i> is $\overrightarrow{OB} = -t\mathbf{i} + 4t\mathbf{j} + 3t\mathbf{k}$, where <i>t</i> is a constant The line <i>l</i> also passes through <i>B</i> .	nt.
	Find the value of t.	[3]

DO NOT WRITE IN THIS MARGIN

(c)	The line m has vector equation $\mathbf{r} = 5\mathbf{i} - \mathbf{j} + 2\mathbf{k} + \mu(a\mathbf{i} - \mathbf{j} + 3\mathbf{k})$. The acute angle between the
	directions of <i>l</i> and <i>m</i> is θ , where $\cos \theta = \frac{1}{\sqrt{6}}$.
	Find the possible values of <i>a</i> . [5]

1(

18

A large cylindrical tank is used to store water. The base of the tank is a circle of radius 4 metres. At time t minutes, the depth of the water in the tank is h metres. There is a tap at the bottom of the tank. When the tap is open, water flows out of the tank at a rate proportional to the square root of the volume of water in the tank.

at $\frac{\mathrm{d}h}{\mathrm{d}t} = -\lambda\sqrt{h}$, where λ is a po	ositive constar	ıt.		[4]
•••••		•••••	•••••		
•••••		•••••	•••••		
•••••		•••••	•••••		
	at $\frac{\mathrm{d}n}{\mathrm{d}t} = -\lambda\sqrt{h}$	at $\frac{dn}{dt} = -\lambda \sqrt{h}$, where λ is a positive λ is a positi	at $\frac{dh}{dt} = -\lambda \sqrt{h}$, where λ is a positive constant	at $\frac{dh}{dt} = -\lambda \sqrt{h}$, where λ is a positive constant.	at $\frac{dh}{dt} = -\lambda \sqrt{h}$, where λ is a positive constant.

(b)	At time $t = 0$ the ta	p is opened. It is given	that $h = 4$ when $t = 0$	and that $h = 2.25$ when $t = 20$.

Solve the differential equation to obtain an expression for t in terms of h , and hence find the time taken to empty the tank. [6]

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

