

Cambridge International AS & A Level

MATHEMATIC	CS		9709/3
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Paper 3 Pure Mathematics 3

October/November 2024

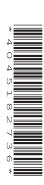
1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

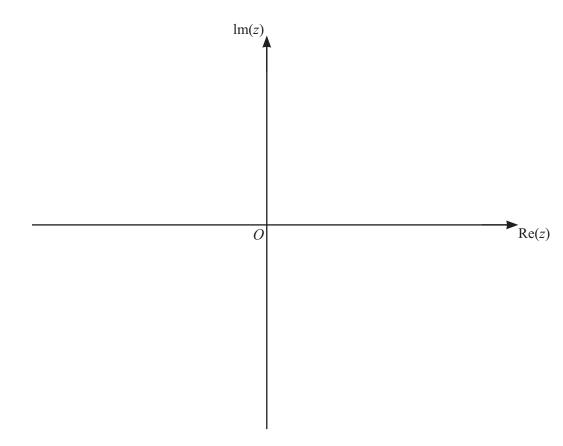

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages.

DC (DE/SG) 336976/3 © UCLES 2024

[Turn over

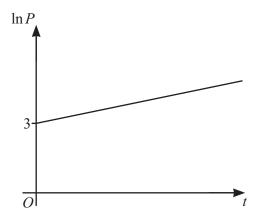


2

- 1 The complex number z satisfies |z| = 2 and $0 \le \arg z \le \frac{1}{4}\pi$.
 - (a) On the Argand diagram below, sketch the locus of the points representing z. [2]

DO NOT WRITE IN THIS MARGIN

(b) On the same diagram, sketch the locus of the points representing z^2 . [2]



- 2 Let $f(x) = 2x^3 5x^2 + 4$.
 - (a) Show that if a sequence of values given by the iterative formula

$$x_{n+1} = \sqrt{\frac{4}{5 - 2x_n}}$$

· "	
converges, then it converges to a root of the equation $f(x) = 0$.	[2]
The equation has a root close to 1.2.	
Use the iterative formula from part (a) and an initial value of 1.2 to determine t 2 decimal places. Give the result of each iteration to 4 decimal places.	he root correct to [3]

4

The number of bacteria in a population, P, at time t hours is modelled by the equation $P = ae^{kt}$, where a and k are constants. The graph of $\ln P$ against t, shown in the diagram, has gradient $\frac{1}{20}$ and intersects the vertical axis at (0,3).

(a)	State the value of <i>k</i> and find the value of <i>a</i> correct to 2 significant figures.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(b)	Find the time taken for <i>P</i> to double. Give your answer correct to the nearest hour.	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

Find the complex number z satisfying the equation

z-3i	_	2-9i
z+3i	_	5

Give your answer in the form $x + iy$, where x and y are real.	[5]
	•••••
	•••••
	•••••
	•••••

		DO NOT WRITE IN THIS MARGIN
--	--	-----------------------------

5 (a)	Show that $\cos^4 \theta - \sin^4 \theta - 4\sin^2 \theta \cos^2 \theta \equiv \cos^2 2\theta + \cos 2\theta - 1$.	[3]
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
			••••
		programs	••••

Solve the equation $\cos^4 \alpha - \sin^4 \alpha = 4 \sin^2 \alpha \cos^2 \alpha$ for $0^\circ \le \alpha \le 180^\circ$.	[3]

6 The lines l and m have vector equations

l:
$$\mathbf{r} = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k} + \lambda(-\mathbf{i} + 2\mathbf{k})$$
 and *m*: $\mathbf{r} = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k} + \mu(2\mathbf{i} - \mathbf{j} + 5\mathbf{k})$.

Lines l and m intersect at the point P.

(a)	State the coordinates of P .	[1]
(b)	Find the exact value of the cosine of the acute angle between l and m .	[3]
		•••••

		9			
(c)	The point A on line l has coordinates ((0,1,1). The	point B on line m	has coordinates	(0,2,-8).

Find the exact area of triangle <i>APB</i> .	[3]
	•••••
	•••••
	,
	••••
	••••
	· • • • •
	· • • • • •
	· • • • •
	· • • • • •
	· • • • • •

7 The parametric equations of a curve are

x	=	3	sin	2t,	v =	tan	t+	cot t.

10

for $0 < t < \frac{1}{2}\pi$.

(a)

Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{3\sin^2 2t}$.	[5]

11	
----	--

form $py + qx + r = 0$, where p , q and r are integers.	[3]
	•••••
	•••••
	•••••
	•••••
	•••••

(a)

Express $f(x)$ in partial fractions.	[3]

	Hence obtain the expansion of $f(x)$ in ascending power	[4
•	State the set of values of x for which the expansion in y	part (b) is valid. [1
•	State the set of variety of which the expansion in p	out (b) is valid.

9 (a)	Find the quotient and remainder when $x^4 + 16$ is divided by $x^2 + 4$. [3]

			15
 	 !!! .!!! !!!!!!!		

Hence show that $\int_{2}^{2\sqrt{3}} \frac{x^4 + 16}{x^2 + 4} dx = \frac{4}{3} (\pi + 4).$ [5]

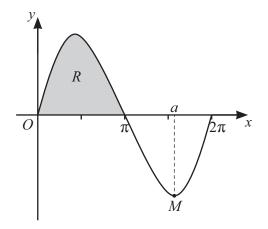
A water tank is in the shape of a cuboid with base area $40\,000\,\mathrm{cm}^2$. At time t minutes the depth of water in the tank is h cm. Water is pumped into the tank at a rate of $50\,000\,\mathrm{cm}^3$ per minute. Water is leaking out of the tank through a hole in the bottom at a rate of $600h\,\mathrm{cm}^3$ per minute.

(a)	Show that $200 \frac{dh}{dt} = 250 - 3h$.	[3]
		•••••

• • • • • • • • • • • • • • • • • • • •	 •••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
	 •••••			

•••••	•	•	

***************************************	***************************************			••••••	•••••
•••••	••••••	•	•••••••	••••••	•••••


•••••	 •••••	 •••••	• • • • • • • • • • • • • • • • • • • •

(b) It is given that when t = 0, h = 50.

Find the time taken for the depth of water in the tank to reach 80 cm. Give your a 2 significant figures.	[5]
	•••••
	••••••
	•••••
	•••••

DO NOT WRITE IN THIS MARGIN

The diagram shows the curve $y = 2\sin x\sqrt{2+\cos x}$, for $0 \le x \le 2\pi$, and its minimum point M, where x = a.

(a)	Find the value of a correct to 2 decimal places.	[5]
		•••••

* 00000080	00019 *	

Use the substitution $u = 2 + \cos x$ to find the exact area of the shaded region R.	[6]
	••••
	· • • • •
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
	· • • • •
	· • • • •
	· • • • •
	· • • • •
	· • • • •
	· • • • •
	••••
	••••
	••••
	••••
	••••
	••••

Additional page

If you use the following page to complete the answer to any question, the question number must be clearly shown.
Permission to reproduce items where third-party owned material protected by convright is included has been sought and cleared where possible. Ever

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

