Cambridge International **AS & A Level**

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

	CANDIDATE NAME						
	CENTRE NUMBER CANDIDATE NUMBER						
* 3 8 9 0 9 0 5 2 9 2 *	Candidates ans Additional Mater READ THESE I Write your centr Give details of the Write in dark blu You may use an Do not use stap	NSTRUCTIONS FIRST e number, candidate number and name on all the work you h ne practical session and laboratory where appropriate, in the e or black pen. HB pencil for any diagrams or graphs. les, paper clips, glue or correction fluid. E IN ANY BARCODES.					
	Electronic calcu You may lose m Use of a Data B Qualitative Anal A copy of the Pe At the end of the	lators may be used. arks if you do not show your working or if you do not use app ooklet is unnecessary. ysis Notes are printed on pages 10 and 11. eriodic Table is printed on page 12. e examination, fasten all your work securely together. marks is given in brackets [] at the end of each question or	Session Laboratory				

For Exam	iner's Use
1	
2	
3	
Total	

This document consists of **12** printed pages.

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 The reaction between acids and alkalis is exothermic. You will find the concentration of a monoprotic acid, HZ, by a thermometric method using a solution of sodium hydroxide of known concentration.

 $HZ(aq) + NaOH(aq) \rightarrow NaZ(aq) + H_2O(I)$

FA 1 is a solution of acid HZ.

FA 2 is 2.00 mol dm⁻³ sodium hydroxide, NaOH.

(a) Method

- Place the thermometer into **FA 1**. Record the temperature of **FA 1** in the table. This is the temperature when the volume of **FA 2** is 0.0.
- Rinse and dry the thermometer.
- Place the thermometer into FA 2. Record the temperature of FA 2 in the table. This is the temperature when the volume of FA 1 is 0.0.
- Fill a burette with **FA 1**.
- Support the plastic cup in the 250 cm³ beaker.
- From the burette transfer 35.0 cm³ of **FA 1** into the plastic cup.
- Use the 50 cm³ measuring cylinder to measure 5.0 cm³ of **FA 2**.
- Transfer the 5.0 cm³ of **FA 2** into the plastic cup. Stir the mixture and record the highest temperature.
- Tip out the solution, rinse the plastic cup with water, shake it to remove excess water and replace the cup in the beaker.
- Rinse and dry the thermometer.
- Use the burette to transfer 30.0 cm³ of **FA 1** into the plastic cup.
- Use the measuring cylinder to transfer 10.0 cm³ of **FA 2** into the plastic cup.
- Stir the mixture and record the highest temperature.
- Tip out the solution, rinse the plastic cup with water, shake it to remove excess water and replace the cup in the beaker.
- Rinse and dry the thermometer.
- Continue the experiment using the volumes of **FA 1** and **FA 2** given in the table and record the maximum temperature of each mixture.

volume FA 1 /cm ³	40.0	35.0	30.0	25.0	20.0	15.0	10.0	5.0	0.0
volume FA 2 /cm ³	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0
temperature/°C									

[3]

(b) (i) Plot a graph of temperature of solution (y-axis) against volume of FA 2 added (x-axis) on the grid. Select a scale on the y-axis to include a temperature of 2°C above your maximum thermometer reading. Label any points you consider anomalous.

Draw two lines of best fit through the points on your graph, the first for the increase in temperature and the second for the decrease in temperature of the mixtures. Extrapolate the two lines so they intersect. [3]

(ii) The intersection on your graph occurs at the volume of **FA 2** that reacted to form a neutral solution.

Determine the volumes of FA 1 and FA 2 required to form a neutral solution.

...... cm³ of **FA 1** neutralises cm³ of **FA 2**.

(c) (i) Calculate the number of moles of sodium hydroxide, **FA 2**, required to obtain a neutral solution in this experiment.

moles of NaOH = mol [1]

(ii) Hence calculate the concentration of HZ in FA 1.

concentration of HZ = mol dm⁻³ [1]

(d) Explain how you would use the data obtained to calculate the enthalpy change of neutralisation of HZ. You do not need to carry out the calculation.

[Total: 12]

[1]

2 You will now determine the concentration of HZ in **FA1** by titration using aqueous sodium carbonate of known concentration.

 $2H^{+}(aq) + CO_{3}^{2-}(aq) \rightarrow H_{2}O(I) + CO_{2}(g)$

FA 3 is $0.0353 \text{ mol dm}^{-3}$ aqueous sodium carbonate, Na₂CO₃. methyl orange indicator

(a) Dilution of FA 1

- Use the 10.0 cm³ pipette to transfer 10.0 cm³ of **FA 1** into the 250 cm³ volumetric flask.
- Add distilled water to the mark.
- Shake the flask to mix the solution thoroughly and label it FA 4.

Titration

- Fill the second burette with **FA 4**.
- Pipette 25.0 cm³ of **FA 3** into a conical flask.
- Add approximately 10 drops of methyl orange.
- Perform a rough titration and record your burette readings in the space below.

The rough titre is cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain that any recorded results show the precision of your practical work.
- Record all of your burette readings and the volume of **FA4** added in each accurate titration.

Ι	
II	
III	
IV	
V	
VI	
VII	

[7]

(b) From your accurate titration results, obtain a suitable value for the volume of **FA 4** to be used in your calculations. Show clearly how you obtained this value.

25.0 cm³ of **FA 3** required cm³ of **FA 4**. [1]

- (c) (i) Give your answers to (ii), (iii) and (iv) to an appropriate number of significant figures. [1]
 - (ii) Calculate the number of moles of sodium carbonate in the FA 3 pipetted into the conical flask.

moles of Na_2CO_3 = mol [1]

(iii) Deduce the number of moles of HZ present in the volume of FA 4 recorded in (b).

moles of HZ = mol [1]

(iv) Calculate the concentration of HZ present in FA 1.

concentration of HZ in **FA 1** = $mol dm^{-3}$ [1]

(d) In Question 1 you determined the concentration of HZ in FA 1 by a thermometric method. In Question 2 you determined the concentration of HZ in FA 1 by titration. Tick which one of the following statements you believe to be true.

 The method in Question 1 is more accurate than the method in Question 2.

 The method in Question 2 is more accurate than the method in Question 1.

 The two methods are of equal accuracy.

Explain your answer.

[1]

(e) A teacher informed a class that 112.3g of pure HZ had been dissolved in distilled water to make 1 dm³ of **FA 1**. A student in the class suggested that HZ could be ethanoic acid.

Using your answer to (c)(iv) show, by calculation, whether the student was correct. (If you were unable to complete the calculation in (c)(iv) you may assume the concentration was 2.08 mol dm^{-3} . This is not the correct value.)

The student was correct/incorrect because

.....

[1]

[Total: 14]

Qualitative Analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen;
- the formation of any precipitate and its solubility in an excess of the reagent added;
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 (a) FA 5, FA 6 and FA 7 are solutions each containing one cation and one anion. One of the cations and all of the anions are listed in the Qualitative Analysis Notes. You will carry out a series of tests on FA 5, FA 6 and FA 7 and draw conclusions from your observations. Use a separate 1 cm depth of each solution in a test-tube for the following tests.

teet		observations	
test	FA 5	FA 6	FA 7
Add a 1 cm depth of aqueous sodium carbonate.			
Add a 1 cm length of magnesium ribbon.			
Add 2 or 3 drops of aqueous silver nitrate, then			
add aqueous ammonia.			
Add a 1 cm depth of aqueous barium nitrate, then			
add a 1 cm depth of dilute hydrochloric acid.			

toot		observations	
test	FA 5	FA 6	FA 7
Add aqueous sodium hydroxide.			
Add a 1 cm depth of FA 7 .			

[10]

(b) Use your observations from (a) to identify as many ions as possible. Give the formula of each ion present. Write 'unknown' if you were unable to make a positive identification of an ion.

	FA 5	FA 6	FA 7
cation			
anion			

[3]

(c) Give the ionic equation for any precipitation reaction involving **FA 5** that you observed in (a). Include state symbols.

.....[1]

[Total: 14]

10

Qualitative Analysis Notes

1 Reactions of aqueous cations

inn	react	tion with
ion	NaOH(aq)	NH ₃ (aq)
aluminium, A <i>l</i> ³⁺(aq)	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_
barium, Ba²⁺(aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, Ca²⁺(aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.
chromium(III), Cr³⁺(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
copper(II), Cu²⁺(aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), Fe²⁺(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), Fe³⁺(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, Mg²⁺(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), Mn²⁺(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, Zn²⁺(aq)	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ^{2–}	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in $NH_3(aq)$)
bromide, Br⁻(aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$)
iodide, I⁻(aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in $NH_3(aq)$)
nitrate, NO ₃ ⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO₂⁻(aq)	NH_3 liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
sulfate, SO ₄ ²-(aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl_2	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

Glop 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 <th1< th=""> 1 1</th1<>								The Pe	riodic Tal	The Periodic Table of Elements	ments							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									Gro	dn								
Image: form of the	-	7											13	14	15	16	17	18
4 10 10 10 10 10 10 10 10 10 10 10 10 10								-										2
$ \begin{array}{ $								т										He
					Key			hydrogen 1.0										helium 4.0
Belt billing b	3	4			atomic number		_						5	9	7	80	6	10
	:=	Be		ato	mic symi	loc							ш	ပ	z	0	ш	Ne
	lithium 6.9	beryllium 9.0		relé	name ative atomic me	ISS							boron 10.8		nitrogen 14.0		fluorine 19.0	neon 20.2
	11	12					_						13		15		17	18
	Na	Mg											Al		٩		Cl	Ar
	sodium 23.0	magnesium 24.3		4	5	9	7	ω	6	10	11	12	aluminium 27.0		phosphorus 31.0		chlorine 35.5	argon 39.9
	19	20		22	23	24	25	26	27	28	29	30	31		33		35	36
	¥	Ca	Sc	F	>	ŗ	Mn	Ъe	ပိ	ïZ	Cu	Zn	Ga	Ge	As	Se	Ъ	Кr
	potassium 39.1	calcium 40.1	scandium 45.0	titanium 47.9	vanadium 50.9	chromium 52.0	manganese 54.9	iron 55.8	cobalt 58.9	nickel 58.7	copper 63.5	zinc 65.4	gallium 69.7	germanium 72.6	arsenic 74.9	selenium 79.0	bromine 79.9	krypton 83.8
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
statuli Vision (10) Zacolian (10) Color (10) Color (11) Color (10) Color (11) Color	Rb	S	≻	Zr	qN	Mo	Ч	Ru	Rh	Ъd	Ag	ы	In	Sn	Sb	Te	I	Xe
	rubidium 85.5	strontium 87.6	yttrium 88.9	zirconium 91.2	niobium 92.9	molybdenum 95.9	technetium -	ruthenium 101.1	rhodium 102.9	palladium 106.4	silver 107.9	cadmium 112.4	indium 114.8	tin 118.7	antimony 121.8	tellurium 127.6	iodine 126.9	xenon 131.3
	55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	lanthanoids	Hf	Та	8	Re	Os	Ir	ъ	Au	Hg	11	РЬ	Bi	Ро	At	Rn
88 89-103 104 105 106 107 108 109 110 111 112 114 116 </td <td>caesium 132.9</td> <td>barium 137.3</td> <td></td> <td>hafnium 178.5</td> <td>tantalum 180.9</td> <td>tungsten 183.8</td> <td>rhenium 186.2</td> <td>osmium 190.2</td> <td>iridium 192.2</td> <td>platinum 195.1</td> <td>gold 197.0</td> <td>mercury 200.6</td> <td>thallium 204.4</td> <td>lead 207.2</td> <td>bismuth 209.0</td> <td>polonium –</td> <td>astatine -</td> <td>radon -</td>	caesium 132.9	barium 137.3		hafnium 178.5	tantalum 180.9	tungsten 183.8	rhenium 186.2	osmium 190.2	iridium 192.2	platinum 195.1	gold 197.0	mercury 200.6	thallium 204.4	lead 207.2	bismuth 209.0	polonium –	astatine -	radon -
Rate aetroids Rf Db Sg Bh Hs Mt Ds Rg Cn Lutherfordum cutation cutation <thcutation< th=""> cutation cutati</thcutation<>	87	88	89-103	104	105	106	107	108	109	110	111	112		114		116		
adum Late Late <thlat< th=""> Late Late <</thlat<>	Ļ	Ra	actinoids	Ъ	Db	Sg	Bh	Hs	Mt	Ds	Rg	ü		Fl		۲<		
57 58 59 60 61 62 63 64 65 66 67 68 69 70 Ianthanum Ce Pr Nd Pm Sm Eu Gd Tb Dy HO Er Tm Yb Ianthanum cerum paseodymium neodymium parentium samarium europium gdointum techum parentium samarium europium gdointum techum parentium parentium samarium europium gdointum techum parentium parentum parentum parentium	francium -	radium -		rutherfordium -	dubnium I	seaborgium -	bohrium –	hassium -	meitnerium -	darmstadtium -	roentgenium -	copernicium -		flerovium -		livermorium –		
57 58 59 60 61 62 63 64 65 66 67 68 69 70 Inthaum cerum passedymium neotymum Sm Eu Gd TD Dy HO Er Tm Yb 138.9 140.1 140.9 744.4 - 152.0 157.3 158.9 162.5 167.3 168.9 173.1 89 90 91 92 93 94 95 96 97 98 99 100 101 102 173.1 AC Th Pa U Np Pu Am Cm BK Cf Es Fm Md No - 232.0 231.0 238.0 - - - - - - - - - - - - 0 101 102 103.1 201 157.3 158.9 162.5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																		
ds La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Fr Tm Yb Ya lattentum in contain presodynium promethium evolution in evolution in the evolution in t			57	58	59	60	61		63	64	65	66	67	68	69	70	71	
Instruction certure presectymium neodynium semantium seture defenium tutuum tutuum <thtutum< th=""> tutuum tutuum<td>lanthano</td><td>ids</td><td>La</td><td>0 C</td><td>Pr</td><td>PN</td><td>Pm</td><td></td><td>Eu</td><td>Ъд</td><td>Tb</td><td>D</td><td>Ч</td><td>ц</td><td>Тп</td><td>γb</td><td>Lu</td><td></td></thtutum<>	lanthano	ids	La	0 C	Pr	PN	Pm		Eu	Ъд	Tb	D	Ч	ц	Тп	γb	Lu	
89 90 91 92 93 94 95 96 97 98 99 100 101 102 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No actinum protuntin unanium puluonum americum curium bekkelum caffornum instelinium mendelevium nobellum - 232.0 231.0 238.0 -			lanthanum 138.9		praseodymium 140.9		promethium -		europium 152.0	gadolinium 157.3	terbium 158.9	dysprosium 162.5	holmium 164.9	erbium 167.3	thulium 168.9	ytterbium 173.1	Iutetium 175.0	
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No actinum thorium protactinum uranium neptunium putonium americum curium berkelium cf Es Fm Md No - 232.0 231.0 238.0 -			89	06	91	92	93		95	96	97	98	66	100	101	102	103	
thorium protactinium uranium neptunium plutonium americium curium berkelium californium einsteinium fermium mendelevium nobelium 232.0 231.0 238.0	actinoids		Ac	Th	Ра		ЧD	Pu	Am	СЗ	Ŗ	ç	Es	ЕШ	Md	No	Ļ	
			actinium -	thorium 232.0	protactinium 231.0	uranium 238.0	neptunium -	plutonium I	americium -	curium	berkelium -	californium	einsteinium -	fermium -	mendelevium -	nobelium -	lawrencium -	

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

12