

Cambridge International AS & A Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			9701/32
Paper 3 Advand	ed Practical Skills 2		May/June 2021
			2 hours
You must answ	er on the question paper.		
You will need:	The materials and apparatu	s listed in the confidential instructions	
INSTRUCTION	IS		
Answer all			

- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.
- You should show all your working, use appropriate units and use an appropriate number of significant figures.
- Give details of the practical session and laboratory, where appropriate, in the boxes provided.

INFORMATION

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.

Session
Laboratory

For Examiner's Use								
1								
2								
3								
Total								

This document has **12** pages.

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Washing soda consists of hydrated sodium carbonate, $Na_2CO_3 \cdot 10H_2O$. When it is stored it loses some of its water of crystallisation to leave $Na_2CO_3 \cdot xH_2O$. Since water has been lost *x* is no longer an integer.

You will carry out a titration to determine the value of x. You will titrate a solution of the sodium carbonate with hydrochloric acid.

The equation for the reaction is shown.

 $Na_2CO_3 \cdot xH_2O(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(aq) + (x+1)H_2O(l)$

FB 1 is an aqueous solution containing $11.30 \text{ g} \text{ dm}^{-3}$ of $Na_2CO_3 \cdot xH_2O$. **FB 2** is 0.100 mol dm⁻³ hydrochloric acid, HC*l*. bromophenol blue indicator

(a) Method

- Fill the burette with **FB 2**.
- Pipette 25.0 cm³ of **FB 1** into a conical flask.
- Add a few drops of bromophenol blue indicator.
- Carry out a rough titration and record your burette readings in the space below.

The rough titre is cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure your recorded results show the precision of your practical work.
- Record in a suitable form, in the space below, all of your burette readings and the volume of FB 2 added in each accurate titration.

(b) From your accurate titration results, obtain a value for the volume of **FB 2** to be used in your calculations. Show clearly how you obtained this value.

25.0 cm³ of **FB 1** required cm³ of **FB 2**. [1]

(c) Calculations

- (i) Give your answers to (c)(ii), (c)(iii) and (c)(iv) to an appropriate number of significant figures.
- (ii) Calculate the number of moles of hydrochloric acid present in the volume of **FB 2** you calculated in (b).

moles of HC*l* = mol [1]

(iii) Use the equation on page 2, and your answer to (c)(ii), to calculate the concentration, in mol dm⁻³, of Na₂CO₃•xH₂O present in **FB 1**.

concentration of $Na_2CO_3 \cdot xH_2O = \dots moldm^{-3}$ [1]

(iv) Calculate the value of x in this sample of $Na_2CO_3 \cdot xH_2O$.

Show your working.

[Total: 14]

2 When anhydrous sodium carbonate dissolves in water the following reaction occurs.

 $Na_2CO_3(s) + aq \rightarrow 2Na^+(aq) + CO_3^{2-}(aq)$

The enthalpy change for this reaction is the enthalpy change of solution of anhydrous sodium carbonate. Its value is $-28.1 \text{ kJ mol}^{-1}$.

You will use this information to find the percentage purity of an impure sample of anhydrous sodium carbonate.

FB 3 is a sample of impure anhydrous sodium carbonate.

(a) Method

Experiment 1

- Weigh the cup and record the mass.
- Place between 1.9g and 2.1g of FB 3 in the cup. Record the mass of the cup + FB 3.
- Calculate and record the mass of **FB 3** used.
- Support the cup in the beaker.
- Place 25.0 cm³ of distilled water into the measuring cylinder. Measure and record the temperature of the water.
- Place the water in the cup and stir until all the solid dissolves.
- Place the thermometer in the solution and record the highest temperature reached. Tilt the cup if necessary so that the bulb of the thermometer is fully covered.
- Rinse the cup and shake dry ready to carry out **Experiment 2**.

Experiment 2

- Repeat the experiment using between 3.9g and 4.1g of **FB 3** and 25.0 cm³ of water.
- Record your results in the same way as in **Experiment 1**.

Results

[5]

(b) Calculations

(i) Use your results from Experiment 1 to calculate the heat energy, in J, released when the FB 3 dissolves.
(Assume 4.2 Lef heat energy changes the temperature of 1.0 cm³ of solution by 1.0 °C.)

(Assume 4.2 J of heat energy changes the temperature of $1.0 \, \text{cm}^3$ of solution by $1.0 \,^\circ\text{C}$.)

heat energy = J [1]

(ii) Use the information on page 4 to calculate the number of moles of anhydrous sodium carbonate needed to release the amount of energy in your answer to (b)(i).

moles of Na_2CO_3 = mol [1]

(iii) Calculate the mass of anhydrous sodium carbonate present in the number of moles in your answer to (b)(ii).

mass of Na_2CO_3 = g [1]

(iv) Use your answer to (b)(iii) to calculate the percentage purity of anhydrous sodium carbonate in FB 3.

percentage purity = [1]

(c) In (b)(iv) you calculated the percentage purity of anhydrous sodium carbonate in FB 3.

What did you assume about the impurity present?

.....

......[1]

(d) You carried out two experiments to measure the temperature change when anhydrous sodium carbonate was dissolved in water.

Complete the sentence below to explain which of these experiments was more accurate.

Your answer should not make reference to the fact that different masses of sodium carbonate were used.

 Experiment	was more accurate beca	ause	

[Total: 11]

Qualitative analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 (a) **FB 4** and **FB 5** each contain one cation and one anion from those listed in the Qualitative Analysis Notes.

Carry out the following tests and record your observations.

test	observations										
lesi	FB 4	FB 5									
Test 1 Heat a spatula measure of solid in a hard-glass test-tube gently at first and then more strongly, then											
leave the tube to cool.											
Test 2 To a small spatula measure of solid in a boiling tube add a 2 cm depth of dilute sulfuric acid.											

[5]

(b) FB 6 is a solution prepared by reacting FB 4 with dilute sulfuric acid.
FB 7 is a solution prepared by reacting FB 5 with dilute sulfuric acid.
In each test use a 1 cm depth of FB 6 or FB 7 in a test-tube. Carry out the tests and record your observations.

(a.c.)	obsen	vations
test	FB 6	FB 7
Test 1 Add a 1 cm depth of aqueous edta.		
Test 2 Add aqueous sodium hydroxide until no further reaction occurs.		
Test 3 Add aqueous ammonia until no further reaction occurs.		
Test 4 Add a 1 cm length of magnesium ribbon and leave to stand for a few minutes.		
Test 5 Add a 2 cm depth of aqueous potassium iodide, then		
add a few drops of starch indicator.	+	
Test 6 Add concentrated hydrochloric acid (CARE) drop by drop until no further change is seen.		
Wash the test-tube thoroughly with plenty of water once your observations are complete.		

(c) Complete the table with the formula of each cation and each anion in **FB 4** and **FB 5**. If you are unable to identify an ion write 'unknown'.

	FB 4	FB 5
cation		
anion		

[2]

(d) Write the ionic equation for the reaction between **FB 6** and magnesium. Include state symbols.

......[1]

[Total: 15]

Qualitative analysis notes

1 Reactions of aqueous cations

ian	reaction with										
ion	NaOH(aq)	NH ₃ (aq)									
aluminium, A <i>l</i> ³⁺(aq)	white ppt. soluble in excess	white ppt. insoluble in excess									
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_									
barium, Ba²⁺(aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.									
calcium, Ca²⁺(aq)	white ppt. with high [Ca²+(aq)]	no ppt.									
chromium(III), Cr³⁺(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess									
copper(II), Cu²⁺(aq)	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution									
iron(II), Fe²⁺(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess									
iron(III), Fe³⁺(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess									
magnesium, Mg²⁺(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess									
manganese(II), Mn²⁺(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess									
zinc, Zn²⁺(aq)	white ppt. soluble in excess	white ppt. soluble in excess									

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ^{2–}	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in $NH_3(aq)$)
bromide, Br⁻(aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$)
iodide, I⁻(aq)	gives yellow ppt. with Ag⁺(aq) (insoluble in NH₃(aq))
nitrate, NO ₃ ⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO₂⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
sulfate, SO ₄ ²-(aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²-(aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl_2	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

		18	He ²	helium 4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	Кr	krypton 83.8	54	Xe	xenon 131.3	86	Rn	radon -									
	17			6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	Br	bromine 79.9	53	I	iodine 126.9	85	At	astatine -				71	Lu	Iutetium 175.0	103	Ļ	lawren cium -	
		16			8	0	oxygen 16.0	16	ა	sulfur 32.1	34	Se	selenium 79.0	52	Te	tellurium 127.6	84	Ро	polonium I	116	۲<	livermorium –	70	Υb	ytterbium 173.1	102	No	nobelium -
		15			7	z	nitrogen 14.0	15	٩	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Bi	bismuth 209.0				69	Tm	thulium 168.9	101	Md	mendelevium -
		14			9	U	carbon 12.0	14	N.	silicon 28.1	32	Ge	germanium 72.6	50	Sn	tin 118.7	82	РЬ	lead 207.2	114	ĿΙ	flerovium -	68	ч	erbium 167.3	100	Еm	fermium -
		13			5	В	boron 10.8	13	Al	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	Γl	thallium 204.4				67		holmium 164.9	66	Es	einsteinium –
										12	30	Zn	zinc 65.4	48	Cd	cadmium 112.4	80	Hg	mercury 200.6	112	С	copernicium -	99	Dy	dysprosium 162.5	98	ç	californium –
ements										11	29	Cu	copper 63.5	47	Ag	silver 107.9	79	Au	gold 197.0	111	Rg	roentgenium 	65		terbium 158.9	97	Bk	berkelium -
ble of Ele	dno									10	28	ïZ	nickel 58.7	46	Ъd	palladium 106.4	78	Ţ	platinum 195.1	110	Ds	darmstadtium -	64	Gd	gadolinium 157.3	96	Cm	curium I
The Periodic Table of Elements	iodic Table Group				_			б			ပိ	cobalt 58.9	45	Rh	rhodium 102.9	77	Ir	iridium 192.2	109	Mt	meitnerium 	63	Eu	europium 152.0	95	Am	americium -	
The Pe			- T	hydrogen 1.0						ø	26	Ъe	iron 55.8	44	Ru	ruthenium 101.1	76	Os	osmium 190.2	108	Hs	hassium -	62	Sm	samarium 150.4	94	Pu	plutonium –
					_			_		7	25	Mn	manganese 54.9	43		technetium -	75	Re	rhenium 186.2	107	Bh	bohrium –	61		5	93	Np	neptunium -
						bol	ass			9	24	ų	chromium 52.0	42	Mo	molybdenum 95.9	74	×	tungsten 183.8	106	Sg	seaborgium -	60	ΡN	neodymium 144.4	92	⊃	uranium 238.0
				Key	atomic number	atomic symbol	name relative atomic mass			5	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Та	tantalum 180.9	105	Db	dubnium –	59	Pr	praseodymium ne 140.9	91	Ра	protactinium 231.0
						ato	rela			4	22	Ħ	titanium 47.9	40	Zr	zirconium 91.2	72	Ηf	hafnium 178.5	104	Rf	rutherfordium —			cerium 140.1	06	Th	thorium 232.0
								-		ю	21	Sc	scandium 45.0	39	≻	yttrium 88.9	57-71	lanthanoids		89-103	actinoids		57	La	lanthanum 138.9	89	Ac	actinium –
		2			4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	S	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium -		ids			~	
		1			e	:	lithium 6.9	7	Na	sodium 23.0	19	×	potassium 39.1	37	Rb	rubidium 85.5	55	Cs	caesium 132.9	87	ц	francium -		lanthanoids			actinoids	

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.