Cambridge International AS & A Level

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

	CANDIDATE NAME		
	CENTRE NUMBER		CANDIDATE NUMBER
*			
4 8	CHEMISTRY		9701/22
~	Paper 2 AS Lev	vel Structured Questions	October/November 2019
4			
°			1 hour 15 minutes
7	Candidates ans	wer on the Question Paper.	
0393	Additional Mate	rials: Data Booklet	

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES.

Answer all questions. Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units. A Data Booklet is provided.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 13 printed pages and 3 blank pages.

Answer **all** the questions in the spaces provided.

- 1 In the Periodic Table, the p block contains elements whose outer electrons are found in the p subshell.
 - (a) Elements in the p block show a general increase in first ionisation energy as the atomic number increases.
 - (i) Draw the shape of a p orbital.

		[1]
(ii)	Write an equation to show the first ionisation energy of silicon.	
		[1]
(iii)	Explain why there is a general increase in first ionisation energies of the elements acre Period 3.	oss
		[2]

(iv) Element A is in the p block.

The graph shows the successive ionisation energies for the removal of the first ten electrons of A.

State and explain the group of the Periodic Table that element **A** belongs to.

group number explanation

- (b) Silicon is found in many compounds in the Earth's crust. Silicon has only three naturally occurring isotopes, ²⁸Si, ²⁹Si and ³⁰Si.
 - (i) The table shows data for ²⁸Si, ²⁹Si and ³⁰Si.

	²⁸ Si	²⁹ Si	³⁰ Si
relative isotopic mass	28.0	29.0	30.0

A sample of silicon contains 92.2% ²⁸Si. The total percentage abundance of ²⁹Si and ³⁰Si in the sample is 7.8%.

The relative atomic mass, A_r , of silicon in the sample is 28.09.

Calculate the percentage abundance of ³⁰Si.

Give your answer to **one** decimal place.

percentage abundance of ³⁰Si =% [3]

(ii) Silicon reacts with nitrogen gas to form Si_3N_4 .

 Si_3N_4 is a solid with a melting point of 1900 °C. It is insoluble in water and does not conduct electricity when molten.

Suggest the type of bonding in **and** structure of Si_3N_4 . Explain your answer.

[3]

- (c) Sulfur-containing compounds, such as C_2H_5SH , are found in fossil fuels, and produce SO_2 when they are burned.
 - (i) Write the equation to show the complete combustion of C_2H_5SH .

......[1]

(ii) State why the presence of SO_2 in the atmosphere has environmental consequences. Describe **one** of the consequences on the environment.

- (d) SO_2 can react with ozone, O_3 , to form SO_3 in two different reactions.
 - (i) In one reaction, SO_2 reacts with O_3 until a dynamic equilibrium is established.

 $SO_2(g) + O_3(g) \rightleftharpoons SO_3(g) + O_2(g)$

State and explain the effect of an increase in pressure on the composition of the equilibrium mixture.

- 2 Oxygen is the most abundant element in the Earth's crust. It reacts with other elements to form stable compounds, ions and molecules.
 - (a) Complete the table to give the formulae and acid/base behaviour of some of the oxides of the Period 3 elements.

element	sodium	aluminium	silicon	phosphorus	sulfur
formula of oxide	Na ₂ O				SO ₃
acid/base behaviour		amphoteric			

[2]

- (b) Group 2 elements form stable hydroxides, with general formula M(OH)₂, where M is the Group 2 element.
 - (i) Beryllium hydroxide, $Be(OH)_2$, is an amphoteric compound that shows similar chemical reactions to aluminium oxide.

State the meaning of the term *amphoteric*.

-[1]
- (ii) Write an **ionic** equation for the reaction of magnesium hydroxide, Mg(OH)₂, with hydrochloric acid.
 -[1]
- (iii) Two methods of preparing strontium hydroxide are shown.

strontium $\frac{H_2O}{\text{reaction 1}}$ strontium $\frac{H_2O}{\text{hydroxide}}$ strontium reaction 2 strontium oxide

State **one** difference between the observations you would make for reaction **1** and reaction **2**.

......[1]

(iv) State how the solubility of the Group 2 hydroxides changes down the group.

......[1]

(c) Sodium peroxide, Na_2O_2 , reacts with CO_2 .

 $Na_2O_2(s) + CO_2(g) \rightarrow Na_2CO_3(s) + \frac{1}{2}O_2(g)$

The partial pressure of $CO_2(g)$ in a 0.500 dm³ sample of air is 5.37 kPa at 20 °C.

(i) Calculate the amount, in moles, of $CO_2(g)$ present in the sample of air at 20 °C.

amount of $CO_2(g)$ = mol [2]

(ii) Calculate the mass of Na₂O₂(s) that would react fully with the amount of CO₂(g) calculated in (i).

mass of $Na_2O_2(s)$ = g [1]

(iii) The peroxide ion, O₂²⁻, has a single covalent bond between the two oxygen atoms. Each oxygen atom carries a negative charge.

Draw a 'dot-and-cross' diagram for the peroxide ion. Show outer electrons only.

[2]

[Total: 11]

3 A series of reactions for phosphorus and its compounds is shown.

	bond angle =°	[1]
(iii)	State the industrial importance of compounds such as $(NH_4^+)(H_2PO_4^-)$.	
		[1]

9

(c) PC	$l_{\rm 5}$ can be used to convert alcohols to halogenoalkanes.
(i)	Write an equation for the reaction of C_2H_5OH with PCl_5 to form C_2H_5Cl .
(ii)	State the type of reaction in (i).
(iii)	Halogenoalkanes can also be prepared by reacting alcohols with hydrogen halides, such as HCl and HI .
	 HCl is prepared using NaCl and concentrated H₂SO₄. HI is prepared by reacting NaI with concentrated H₃PO₄.
	Suggest why HI is not prepared by the reaction of NaI with concentrated H_2SO_4 .
(iv)	The rate of the hydrolysis reaction of halogenoalkanes with NaOH(aq) is dependent on the halogen that is bonded to carbon.
	State and explain the order of reactivity when NaOH(aq) reacts separately with C_2H_5Cl , C_2H_5Br and C_2H_5I .
	[Total: 13]

4 Prenol is a naturally occurring organic molecule found in many fruits. It contains both an alkene and an alcohol functional group.

(a) Prenol can be formed by the reaction of **G** with NaOH(aq).

Complete the diagram to show the mechanism of the reaction between **G** and NaOH(aq) to form prenol.

Include all relevant charges, partial charges, lone pairs and curly arrows.

- (b) Prenol reacts with steam to form a mixture of three isomers, J, K and L, of molecular formula $C_5H_{12}O_2$.
 - (i) When J is heated with excess acidified potassium dichromate(VI) it forms an organic product which shows no reaction with 2,4-DNPH.

Draw the structure of **J**.

 \boldsymbol{K} and \boldsymbol{L} are stereoisomers with molecular formula $C_{5}H_{12}O_{2}.$

K and L both react when heated with excess acidified potassium dichromate(VI) to form M, $C_{\rm 5}H_8O_3.$

M forms an orange precipitate on reaction with 2,4-DNPH.

(ii)	Give the structural formula of K and L .
	[1]
(iii)	Name the type of stereoisomerism shown by K and L .
	[1]
(iv)	Give the balanced equation to represent the reaction of K , $C_5H_{12}O_2$, with acidified potassium dichromate(VI) to form M , $C_5H_8O_3$.
	Use [O] to represent an atom of oxygen provided by the oxidising agent.
(c) (i)	Prenol contains an alkene functional group.
	Describe a chemical test to confirm the presence of an alkene functional group. Give the result of the test.
	[1]
(ii)	Prenol can be polymerised to form poly(prenol).

Draw **one** repeat unit of poly(prenol).

[1]

(d) Isoprenol is a structural isomer of prenol.

The series of reactions shows how isoprenol can be used to form **Q**, a sweet-smelling liquid.

(e) P can be produced as shown.

(i) The progress of reaction **I** can be monitored using infra-red spectroscopy.

One absorption that can be used to monitor the progress of this reaction is that of C–Cl at 730 cm⁻¹.

Identify another absorption that can be used to monitor the progress of this reaction. In your answer, you should refer to the specific bond and its corresponding absorption range in wavenumbers.

		[1]
(ii)	State the reagent(s) needed for reaction II .	
		[1]
(iii)	Name the type of reaction that occurs in reaction III .	
		[1]
(iv)	The yield of reaction I is very low.	
	Explain why.	
		[2]
		[-]
	[Total:	17]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.