

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			9701/34
Paper 3 Advar	nced Practical Skills 2	Oct	ober/November 2019
			2 hours
Candidates and	swer on the Question Paper.		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

As listed in the Confidential Instructions

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Additional Materials:

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 10 and 11.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session	
Laboratory	

For Examiner's Use	
1	
2	
3	
Total	

This document consists of 12 printed pages.

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Hydrogen peroxide decomposes in a reaction catalysed by manganese(IV) oxide.

$$2H_2O_2(aq) \rightarrow 2H_2O(I) + O_2(g)$$

You will investigate this decomposition by measuring the volume of oxygen collected over a period of time. You will also use the volume of oxygen collected to calculate the concentration of the aqueous hydrogen peroxide.

FB 1 is aqueous hydrogen peroxide, H₂O₂.

FB 2 is manganese(IV) oxide, MnO₂.

(a) Method

- Fill the tub with water to a depth of approximately 5 cm.
- Fill the 250 cm³ measuring cylinder **completely** with water. Hold a piece of paper towel firmly over the top, invert the measuring cylinder and place it in the water in the tub.
- Remove the paper towel and clamp the inverted measuring cylinder so that the open end is in the water just above the base of the tub.
- Use the 50 cm³ measuring cylinder to place 30 cm³ of **FB 1** and 20 cm³ of distilled water into the reaction flask labelled **X**.
- Check that the bung fits tightly into the neck of flask **X**, clamp flask **X** and place the end of the delivery tube into the 250 cm³ measuring cylinder.
- Remove the bung from the neck of flask X. Add all of the FB 2 into the hydrogen peroxide
 in the flask and replace the bung immediately. Start the stop-clock and leave it running
 until the end of the experiment.
- Remove the flask from the clamp and swirl to mix the contents, then replace the flask in the clamp.
- After 1 minute measure the volume of gas collected.
- After 4 minutes from the start of the experiment measure the volume of gas collected.

Keep FB 1 for use in Question 3.

Results

	(i)	Use the volume of gas that you collected at 4 minutes to calculate the number of moles of hydrogen peroxide which had decomposed at this time. (Assume 1 mol of gas occupies 24.0 dm³ at this temperature.)
		moles of $H_2O_2 = \dots mol$ [1]
	(ii)	Assume all the H ₂ O ₂ had decomposed in 4 minutes.
		Calculate the initial concentration of H ₂ O ₂ , in mol dm ³ , in FB 1 .
		initial concentration of $H_2O_2 = \dots mol dm^{-3}$ [2]
(c)		student missed taking a reading at 1 minute so took a reading at 2 minutes instead. This ident stated that after 2 minutes:
		rate of reaction = $\left(\frac{\text{volume of gas collected}}{2}\right) \text{ cm}^3 \text{ minute}^{-1}$
	ls t	the student correct? Explain your answer.
		[2]
(d)		other student carried out the experiment in $\mbox{(a)}$ but used twice the mass of anganese(IV) oxide.
	Sta	ate and explain what effect this would have on the results obtained.
		[1]
		[Total: 9]

2 In Question 1 you determined the concentration of a sample of aqueous hydrogen peroxide, **FB 1**, by measuring the volume of oxygen produced when it decomposed.

In **Question 2** you will determine the concentration of a different sample of aqueous hydrogen peroxide by titration with acidified manganate(VII) ions. The equation for the reaction is shown.

$$2MnO_4^{-}(aq) + 6H^+(aq) + 5H_2O_2(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(I) + 5O_2(g)$$

FB 3 is aqueous hydrogen peroxide, H₂O₂.

FB 4 is 0.0200 mol dm⁻³ potassium manganate(VII), KMnO₄.

FB 5 is 1 mol dm⁻³ sulfuric acid, H₂SO₄.

(a) Method

- Fill the burette with **FB 4**.
- Pipette 25.0 cm³ of **FB 3** into a conical flask.
- Rinse the 50 cm³ measuring cylinder with distilled water.
- Use this measuring cylinder to add 20 cm³ of **FB 5** into the conical flask.
- Perform a rough titration and record your burette readings in the space below.

The rough tit	re is	cm ³
---------------	-------	-----------------

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FB 4 added in each accurate titration.

Keep FB 4 for use in Question 3.

I	
II	
III	-
IV	,
V	
VI	[
VI	I

[7]

(b)	From your accurate titration results, obtain a suitable value for the volume of FB 4 to be use in your calculations. Show clearly how you obtained this value.		
		25.0 cm ³ of FB 3 required cm ³ of FB 4 . [1]	
(c)	Cal	Iculations	
	(i)	Calculate the number of moles of manganate(VII) ions present in the volume of ${\bf FB}$ 4 recorded in ${\bf (b)}$.	
		moles of $MnO_4^- = mol [1]$	
	(ii)	Use your answer to (c)(i) and the equation on page 4 to determine the number of moles of hydrogen peroxide present in 25.0 cm ³ of FB 3.	
		moles of $H_2O_2 = \dots mol$ [1]	
	(iii)	Calculate the concentration, in mol dm ⁻³ , of hydrogen peroxide in FB 3 .	
		and the second s	
		concentration of $H_2O_2 = \dots mol dm^{-3}$ [1]	

(d)	hyd	Question 1 and in Question 2 you determined the concentration of aqueous rogen peroxide using different methods. The method used in Question 2 is the more urate.
		ntify two sources of error in the determination of the concentration in Question 1 and gest how these errors could be minimised.
	erro	or 1
	min	imised by
	erro	or 2
	min	imised by[2]
(e)		tudent suggested one source of error in the method used in Question 2 was that the furic acid was measured using a measuring cylinder and that a pipette should be used.
	Exp	plain whether this suggestion is correct.
(f)	(i)	Another student was given a sample of aqueous hydrogen peroxide that was labelled as '10 vol'. The theoretical concentration of this sample of $\rm H_2O_2(aq)$ is $0.833\rm moldm^{-3}$. The student used a titration method to find the actual concentration of this sample and found it to be $0.796\rm moldm^{-3}$.
		Calculate the percentage difference, based on the theoretical concentration, between the actual and theoretical concentrations.
		percentage difference = % [1]
	(ii)	When determining the concentration of hydrogen peroxide in a school or college laboratory, the value is nearly always much lower than the theoretical value.
		Suggest a reason for this difference.
		[1]
		[Total:16]

Qualitative Analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen;
- the formation of any precipitate and its solubility in an excess of the reagent added;
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 (a) (i) FB 6, FB 7 and FB 8 are all aqueous solutions. Each contains one anion and one cation.

Carry out the following tests and record your observations.

44	observations		
test	FB 6	FB 7	FB 8
To a 1 cm depth in a test-tube add a 1 cm depth of dilute sulfuric acid and then add a few drops of FB 4 , KMnO ₄ (aq).			
To a 1 cm depth in a boiling tube add aqueous sodium hydroxide, then			
warm gently.			
To a 1 cm depth in a test-tube add a 1 cm depth of FB 1 , H ₂ O ₂ (aq), and then add aqueous sodium hydroxide.			
To a 1 cm depth in a test-tube add aqueous barium chloride or aqueous barium nitrate.			
To a 1 cm depth in a boiling tube add a 1 cm depth of aqueous sodium hydroxide and a piece of aluminium foil and then warm gently.			

(ii)	Identify, with a reason, the cation present in FB 6 .	
(iii)	Identify, with a reason, two anions that could be present in FB 6 .	
(iv)	Identify, with a reason, a cation that could not be present in FB 7 .	
(v)	Identify, with a reason, an anion that could be present in FB 8 .	
		[1]

(b) A student is given an unlabelled bottle containing a liquid that is either propan-1-ol, $CH_3CH_2CH_2OH$, or ethanoic acid, CH_3COOH .

Describe tests that would allow the student to confirm the identity of the liquid. Record in a suitable table the tests and the expected positive result for each of your tests.

[3]

[Total: 15]

Qualitative Analysis Notes

1 Reactions of aqueous cations

	reaction with		
ion	NaOH(aq)	NH ₃ (aq)	
aluminium, Al³+(aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_	
barium, Ba ²⁺ (aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.	
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.	
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess	
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution	
iron(II), Fe²+(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess	
iron(III), Fe³+(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess	
magnesium, Mg²+(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess	
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess	
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess	

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))
iodide, I-(aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ -(aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

The Periodic Table of Elements

				_						_			_						_				
	18	2	He	helium	10	Se	neon 20.2	18	Ā	argon 39.9	36	조	kryptor 83.8	54	×e	xenor 131.3	86	R	radon				
	17				6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	Ā	bromine 79.9	53	Н	iodine 126.9	85	Αţ	astatine -				
	16				80	0	oxygen 16.0	16	S	sulfur 32.1	34	Se	selenium 79.0	52	Те	tellurium 127.6	84	Ро	molouium -	116	۲<	livermorium	ı
	15				7	z	nitrogen 14.0	15	۵	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	:E	bismuth 209.0				
	41				9	O	carbon 12.0	41	S	silicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Ъ	lead 207.2	114	Ll	flerovium	1
	13				2	В	boron 10.8	13	Ρl	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	11	thallium 204.4				
										12	30	Zu	zinc 65.4	48	В	cadmium 112.4	80	Ę	mercury 200.6	112	ပ်	copernicium	-
										7	29	ŋ	copper 63.5	47	Ag	silver 107.9	62	Αn	gold 197.0	111	Rg	roentgenium	1
dn										10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	చ	platinum 195.1	110	Ds	darmstadtium	-
Group										6	27	රි	cobalt 58.9	45	돈	rhodium 102.9	11	'n	iridium 192.2	109	¥	meitnerium	1
		_	I	hydrogen	2					80	26	Ъе	iron 55.8	44	Ru	ruthenium 101.1	9/	SO	osmium 190.2	108	Hs	hassium	-
					_					7	25	M	manganese 54.9	43	ပ	technetium -	75	Re	rhenium 186.2	107	뮵	pohrium	-
						Ю	S			9	24	ပ်	chromium 52.0	42	Mo	molybdenum 95.9	74	≥	tungsten 183.8	106	Sg	seaborgium	-
				Kev	atomic number	atomic symbo	name relative atomic mass			2	23	>	vanadium 50.9	41	qN	niobium 92.9	73	д	tantalum 180.9	105	Ор	dubnium	-
					at	ator	relat			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	꿒	rutherfordium	-
								_		င	21	Sc	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids		
	2				4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Š	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium	
	_				8	=	lithium 6.9	=	Na	sodium 23.0	19	×	potassium 39.1	37	&	rubidium 85.5	55	S	caesium 132.9	87	ъ́	francium	-

Lu Lu	175.0	103	۲	lawrencium	1
70 Yb	173.1	102	8	nobelium	ı
m Tm	168.9	101	Md	mendelevium	ı
88 正	167.3	100	Fm	ferminm	ı
67 Ho	164.9	66	Es	einsteinium	ı
Dy	162.5	86	Ç	californium	ı
65 Tb	158.9	26	Ř	berkelium	ı
Gd Gd	157.3	96	Cm	curium	ı
En Eu	152.0	92	Am	americium	ı
Sm	150.4	94	Pn	plutonium	ı
Pm		93	Νp	neptunium	ı
pN 09	144.4	95	⊃	uranium	238.0
Pr	140.9	91	Ра	protactinium	231.0
Ce Ce	140.1	06	Т	thorium	232.0
57 La	138.9	88	Ac	actinium	

lanthanoids

actinoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.