Cambridge International AS & A Level

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

	CANDIDATE NAME						
	CENTRE NUMBER				CANDID NUMBE		
* 5 8	CHEMISTRY						9701/35
8 4 4	Paper 3 Advance	ced Practical	Skills 1			October/N	ovember 2019
678463	Candidates ans Additional Mater				nfidential Instructions		2 hours
*	READ THESE I	INSTRUCTIO	NS FIRST				
	Give details of the Write in dark blue You may use an Do not use stap DO NOT WRITE Answer all quest Electronic calcul	he practical so ue or black pe n HB pencil fo les, paper clip E IN ANY BAF stions. lators may be arks if you do	ession and n. r any diagr os, glue or RCODES. e used. o not show	labc ams corre		xes provided. priate units.	cion
	Qualitative Analy					Ses	sion
	A copy of the Pe		·			Laha	
					work securely together.] at the end of each question or	Labo	ratory
							iner's Use
						1	
						2	
						3	
						Total	

This document consists of **13** printed pages and **3** blank pages.

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 In this experiment you will determine the concentration of a sample of hydrochloric acid. You will do this by measuring the volume of hydrogen produced when an excess of magnesium reacts with the acid.

 $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$

FA 1 is magnesium powder, Mg.

FA 2 is hydrochloric acid, HC*l*.

- (a) Method
 - Weigh the container with **FA 1**. Record the mass.
 - Fill the tub with water to a depth of approximately 5 cm.
 - Fill the 250 cm³ measuring cylinder completely with water. Hold a piece of paper towel firmly over the top, invert the measuring cylinder and place it in the water in the tub.
 - Remove the paper towel and clamp the inverted measuring cylinder so that the open end is just above the base of the tub.
 - Use the 25 cm³ measuring cylinder to place 25.0 cm³ of **FA 2** into the reaction flask, labelled **X**.
 - Check that the bung fits tightly in the neck of flask **X**, clamp flask **X**, and place the end of the delivery tube into the inverted 250 cm³ measuring cylinder.
 - Remove the bung from the neck of flask X. Tip all of **FA1** into flask X and replace the bung **immediately**. Remove the flask from the clamp and swirl to mix the contents.
 - Swirl the flask occasionally until no more gas is evolved. Replace the flask in the clamp.
 - Measure and record the final volume of gas in the measuring cylinder.
 - Weigh and record the mass of the container with any residual solid.
 - Calculate and record the mass of **FA 1** used.

Keep FA 2 for use in Question 2.

(b) Calculations

(i) Calculate the number of moles of hydrogen gas produced. (Assume 1 mol of gas occupies 24.0 dm³ at this temperature.)

moles of H₂(g) = mol [1]

(ii) Calculate the concentration of hydrochloric acid in FA 2.

concentration of HCl in **FA 2** = mol dm⁻³ [1]

(iii) In this experiment the magnesium powder was in excess.

Calculate the mass of magnesium powder needed for complete reaction with all the hydrochloric acid in 25.0 cm^3 of **FA 2**.

mass of Mg = g [1]

(c) A student suggested two modifications to the method in (a) to give a more accurate value for the concentration.

For each suggestion, state whether you agree with the student and explain your answer.

Suggestion 1: Use magnesium ribbon rather than powdered magnesium; keep the rest of the experiment the same.

Suggestion 2: Use twice the mass of magnesium powder; keep the rest of the experiment the same.

[2]

(d) Another student carried out the experiment in (a) but used less magnesium than that calculated in (b)(iii).

State and explain the effect this would have on the calculated concentration of hydrochloric acid in **FA 2**.

[1]
[Total: 8]

2 In this experiment you will determine the concentration of **FA2** by titration using aqueous sodium hydroxide.

 $HCl(aq) + NaOH(aq) \rightarrow NaCl(aq) + H_2O(I)$

FA 2 is hydrochloric acid, HC*l*. **FA 3** is 0.100 mol dm⁻³ sodium hydroxide, NaOH. methyl orange indicator

(a) Method

Dilution of FA 2

- Fill the burette with **FA 2**.
- Run between 40.00 and 45.00 cm³ from the burette into the 250 cm³ volumetric flask.
- Record the volume used.
- Make the solution up to the 250 cm³ mark by adding distilled water.
- Shake the flask thoroughly to ensure mixing.
- Label this solution of hydrochloric acid **FA 4**.

volume of **FA 2** used = cm³

Titration

- Rinse the burette with distilled water and then with a little **FA 4**.
- Fill the burette with **FA 4**.
- Pipette 25.0 cm³ of **FA 3** into a conical flask.
- Add several drops of methyl orange indicator.
- Perform a rough titration and record your burette readings.

The rough titre is cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record in a suitable form all of your burette readings and the volume of **FA 4** added in each accurate titration.

Ι	
II	
III	
IV	
V	
VI	
VII	
VIII	

[8]

(b) From your accurate titration results, obtain a value for the volume of **FA 4** to be used in your calculations. Show clearly how you obtained this value.

25.0 cm³ of **FA 3** required cm³ of **FA 4**. [1]

(c) Calculations

- (i) Give your answers to (ii), (iii) and (iv) to the appropriate number of significant figures. [1]
- (ii) Calculate the number of moles of hydrochloric acid that reacted with 25.0 cm³ of **FA 3**.

moles of HCl =r	nol
	[1]

(iii) Calculate the concentration of hydrochloric acid in FA 4.

concentration of HCl in **FA 4** = moldm⁻³ [1]

(iv) Calculate the concentration of hydrochloric acid in FA 2.

concentration of HCl in **FA 2** = mol dm⁻³ [1]

(d) Calculate the maximum percentage error in the volume of FA 2 you added to the volumetric flask.

maximum percentage error =%

(e) In Question 1 and Question 2 you have determined the concentration of FA 2 by two different methods. Each method used has possible sources of error, for example in Question 1 the largest source of error is escape of gas.

Apart from this error, state and explain a source of error for each method.

Question 1	
Question 2	
	[2]

[Total: 16]

Qualitative Analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen;
- the formation of any precipitate and its solubility in an excess of the reagent added;
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

- **3 (a) FA 5** is a salt that contains two different cations and a single anion from those listed in the Qualitative Analysis Notes.
 - Place a small spatula measure of FA 5 in a hard-glass test-tube and heat gently.
 Do not inhale the fumes.
 Record all your observations.

......[2]

(ii) Pour a 4 cm depth of distilled water into a boiling tube. Add the remaining FA 5 and stir carefully until the solid has dissolved. This solution is FA 6. Carry out the following tests on FA 6 and record your observations.

test	observations
To a 1 cm depth in a test-tube, add aqueous ammonia.	
To a 1 cm depth in a boiling tube, add aqueous sodium hydroxide, then	
warm the mixture.	

test	observations
To a 1 cm depth in a test-tube, add aqueous barium nitrate or aqueous barium chloride, then	
add dilute hydrochloric acid or dilute nitric acid.	

[4]

(iii) Identify the three ions in FA 5.

FA 5 contains , and [2]

(b) A student carried out Qualitative Analysis tests on a hydrated salt, FA 7, and concluded that it contained the ions K⁺, Cr³⁺ and SO₄²⁻. The relative formula mass of FA 7 is 499.3.

Determine the formula of **FA 7**.

The formula of FA 7 is

[2]

Question 3 continues on page 10.

- (c) **FA 8** is a solution containing a single cation and a single anion, both of which are listed in the Qualitative Analysis Notes.
 - (i) Carry out the following tests and record your observations.

test	observations
To a 1 cm depth in a test-tube, add a few drops of aqueous acidified potassium manganate(VII), then	
add starch indicator.	
To a 1 cm depth in a test-tube, add aqueous sodium hydroxide.	

[2]

(ii) Identify the two ions in FA 8.

(iii) Suggest an additional test you could carry out to confirm the presence of the anion in FA 8.Carry out this test and record your result.

[2]

(iv) Give the ionic equation for the reaction you carried out using **FA 8** and sodium hydroxide. Include state symbols.

......[1]

[Total: 16]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Qualitative Analysis Notes

1 Reactions of aqueous cations

ian	reac	tion with
ion	NaOH(aq)	NH ₃ (aq)
aluminium, A <i>l</i> ³⁺(aq)	white ppt. soluble in excess	white ppt. insoluble in excess
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	-
barium, Ba²⁺(aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.
calcium, Ca²⁺(aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.
chromium(III), Cr³⁺(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess
copper(II), Cu²+(aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution
iron(II), Fe²⁺(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess
iron(III), Fe³⁺(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess
magnesium, Mg²⁺(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess
manganese(II), Mn²⁺(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess
zinc, Zn²⁺(aq)	white ppt. soluble in excess	white ppt. soluble in excess

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ^{2–}	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in $NH_3(aq)$)
bromide, Br⁻(aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$)
iodide, I⁻(aq)	gives yellow ppt. with Ag⁺(aq) (insoluble in NH₃(aq))
nitrate, NO ₃ ⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO₂⁻(aq)	NH_3 liberated on heating with OH ⁻ (aq) and Al foil
sulfate, SO ₄ ²-(aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl_2	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

The Periodic Table of Elements	Group	13 14 15 16 17 18		Key hydrogen 1.0 4.0	6 7 8 9	L N C C	boron carbon n 10.8 12.0	14 15 16 17	Si P S C <i>l</i>	5 6 7 8 9 10 11 12 altiminum silicon phosphorus sulfur chlorine argon argon 28.1 31.0 32.1 35.5 39.9	24 25 26 27 28 29 30 31 32 33 34 35	Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br	anganese iron cobalt nickel copper zinc gallum gr 54.9 55.8 58.9 58.7 63.5 65.4 69.7	42 43 44 45 46 47 48 49 50 51 52 53	Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I		74 75 76 77 78 79 80 81 82 83 84 85	W Re Os Ir Pt Au Hg T/ Pb Bi Po At	n tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine 183.8 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0	106 107 108 109 110 111 112 114		dubnium seaborgium bohrium hassium meitnerium darmstaditum roe 	60 61 62 63 64 65 66 67 68 69	Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb	m promethrum samarium europium gadoinium terbrum dysprosium holmium ethrum tyterbrum 1 - 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.1	92 93 94 95 96 97 98 99 100 101	Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	plutonium americium curium berkelium californium einsteinium fermium mendelevium r	
The Period			- T	hydrogen 1.0						ω	26	Fe	iron 55.8	44	Ru	ruthenium 101.1	76	Os	osmium 190.2	108	Hs	hassium	62	Sm	samarium 150.4	94	Pu	plutonium	
						ey	number	symbol	omic mass			6	24	с С	chromium 52.0	42	Mo	molybdenum 95.9	74	8	tungsten 183.8	106	Sg	seaborgium -	60	PN	odymium 144.4	92	⊃
				Ŷ	atomic	atomic	ne relative at			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Hf	hafnium tant 178.5 18	104	Rf	rutherfordium dubi -		С С	cerium 140.1	06	Th	thorium	
						е	lium 0	2	g	asium 33			ium scandium .1 45.0			tium yttrium 6 889		<u></u>	um 7.3	8 89-103	actinoids	шп .	57	La	lanthanum 138.9	68	Ac	actinium	
		1 2			ω		lithium beryllium 6.9 9.0	11 12		sodium magnesium 23.0 24.3			potassium calcium 39.1 40.1			rubidium strontium 85.5 87.6	55 56		caesium barium 132.9 137.3	87 88	Fr Ra	francium radiu -		lanthanoids			actinoids		

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.