

Cambridge International AS & A Level

	CANDIDATE NAME						
	CENTRE NUMBER			CANDID NUMBEI			
9 6 *	CHEMISTRY 9701/34						
4 3	Paper 3 Advanced Practical Skills 2			October/November 2020			
1 4					2 hours		
0 2	You must answe	er on the question	paper.				
4 *	You will need: The materials and apparatus listed in the confidential instructions						
	Answer all	-					
	• Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.						
	 Write your name, centre number and candidate number in the boxes at the top of the page. Write your answer to each question in the space provided. 						
	Do not use an erasable pen or correction fluid.						
	 Do not write on any bar codes. You may use a calculator. 						
	 You should show all your working, use appropriate units and use an appropriate number of significant figures. 						
 Give details of the practical session and laboratory, where appropriate, in the boxes provided. 			Session				
	50,00	- [
	INFORMATION	J			Laboratory		
		ark for this paper i					
	 The number in brackets 		n question	or part question is shown			
	• The Period	ic Table is printed i	•	· · ·]		
	 Notes for u 	se in qualitative an	alysis are	provided in the question paper.	For Examiner's Use		

For Examiner's Use		
1		
2		
3		
Total		

This document has **16** pages. Blank pages are indicated.

Quantitative Analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Many hydrated salts lose water of crystallisation when heated. You will identify the metal in a hydrated salt by heating the salt until it becomes anhydrous.

The equation for the dehydration of the hydrated salt, X•16H₂O, is shown.

 $X \cdot 16H_2O(s) \rightarrow X(s) + 16H_2O(g)$

FB 1 is the hydrated salt, $X \cdot 16H_2O$.

(a) Method

- Weigh a crucible with its lid and record the mass.
- Add between 1.8g and 2.0g of **FB 1** to the crucible.
- Weigh the crucible and lid with **FB 1** and record the mass.
- Place the crucible on the pipe-clay triangle. Gently heat the crucible and contents for approximately two minutes with the lid on.
- Remove the lid. Then heat the crucible and contents strongly for approximately four minutes.
- Replace the lid and leave the crucible and residue to cool for at least five minutes.

While the crucible is cooling, you may wish to begin work on Question 2 or 3.

- Reweigh the crucible and contents with the lid on. Record the mass.
- Remove the lid. Heat the crucible and contents strongly for a further two minutes.
- Replace the lid and leave the crucible and residue to cool for at least five minutes. Then reweigh the crucible and contents with the lid on. Record the mass.
- Calculate and record the mass of FB 1 added to the crucible and the mass of residue obtained.

[5]

(b) Calculations

(i) Calculate the number of moles of water of crystallisation lost during heating of FB 1.

moles of H_2O lost = mol [1]

(ii) Use your answer to (b)(i) to calculate the number of moles of anhydrous residue, X, produced by the heating in (a).

moles of X produced = mol [1]

(iii) Calculate the relative formula mass of X.

*M*_r of X = [1]

(iv) X is the sulfate of a metal in Group 13 of the Periodic Table.

Calculate the relative atomic mass of the metal. Show your working.

- 4
- 2 In this experiment, you will determine the concentration of an alkali. You will mix different volumes of acid with a fixed volume of alkali and measure the temperature rise that occurs each time. You will then determine the enthalpy change for the neutralisation of the acid with the alkali.

FB 2 is aqueous sodium hydroxide, NaOH. **FB 3** is 1.95 mol dm^{-3} sulfuric acid, H_2SO_4 .

(a) Method

• Use the thermometer to measure and record the initial temperature of **FB 2**.

initial temperature of **FB 2** =°C

- Support a plastic cup in the 250 cm³ beaker.
- Fill one burette with **FB 3**. Label this burette **FB 3**.
- Fill the other burette with distilled water.

Experiment 1

5

6

- Use the 10 cm³ pipette to transfer 10.0 cm³ of **FB 2** into the plastic cup.
- Add 8.00 cm³ of distilled water from the burette into the plastic cup.
- Add 2.00 cm³ of **FB 3** from the burette into the plastic cup.
- Stir the mixture and measure the maximum temperature reached. (You may need to tilt the cup so that the bulb of the thermometer is completely immersed.) Record the maximum temperature.
- Empty, rinse and shake dry the plastic cup, ready for use in **Experiment 2**.

0.00

experiment	volume of FB 2 /cm ³	volume of H ₂ O/cm ³	volume of FB 3/cm ³	maximum temperature/°C
1	10.0	8.00	2.00	
2	10.0	6.00	4.00	
3	10.0	4.00	6.00	
4	10.0	2.00	8.00	

• Repeat this procedure to carry out experiments 2 to 5, using the volumes of **FB 2**, water and **FB 3** shown in the table. Record the maximum temperature reached in each experiment.

Ι	
II	
III	
IV	
V	

Carry out **one** further experiment which will enable you to determine more precisely the minimum volume of **FB 3** that gives the highest maximum temperature. This is **Experiment 6**. Record the volumes of water and **FB 3** and the maximum temperature in the table above. [5]

10.00

(b) On the grid opposite, plot a graph of maximum temperature reached on the *y*-axis and volume of **FB 3** on the *x*-axis.

Select a scale on the *y*-axis which includes a temperature 3.0 °C above the maximum temperature reached.

Label any points you consider to be anomalous.

10.0

10.0

5

I II III IV

Draw two **straight** lines of best fit on your graph. The first line is for increasing maximum temperature and the second after the maximum temperature was reached.

Extrapolate the two lines so that they intersect.

Use your graph to determine the volume of **FB 3** that reacts with 10.0 cm³ of **FB 2**.

volume of **FB 3** = cm³ [4] (c) (i) Calculate the change in energy when the volume of FB 3 in (b) is neutralised by FB 2, sodium hydroxide.
 Assume that 4.2 J of energy changes the temperature of 1.0 cm³ of solution by 1.0 °C.

energy change = J [1]

(ii) Calculate the number of moles of sulfuric acid in the volume of FB 3 in (b). (If you were unable to answer 2(b), use 5.70 cm³ as the volume of FB 3.)

moles of H_2SO_4 = mol [1]

(iii) Calculate the enthalpy change of neutralisation, in kJ mol⁻¹, for 1.00 mol of H_2SO_4 reacting with **FB 2**.

enthalpy change of neutralisation =	kJ mol ⁻¹ [1]
sign	value

(iv) Write the equation for the neutralisation of FB 3 with FB 2. Include state symbols.

......[1]

(v) Use your answer to (c)(ii) and the information on page 4 to calculate the concentration, in mol dm⁻³, of NaOH in FB 2.

concentration of NaOH in **FB 2** = mol dm⁻³ [1]

(d) Apart from using a more accurate thermometer, better insulation or taking more readings, suggest **one** modification to the **procedure** which would make the value for the enthalpy change of neutralisation calculated in (c)(iii) more accurate.

......[1]

[Total: 15]

Qualitative Analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

3 The following information about the redox properties of some anions will be helpful.

anion	property	
nitrite	easily oxidised	
nitrate	cannot be oxidised	
sulfite	easily oxidised	
sulfate	cannot be oxidised	

FB 4 and **FB 5** are solutions each containing one cation and one anion. Both anions are listed in the Qualitative Analysis Notes. (a) Carry out the tests and record your observations in the table. Use a 1 cm depth of **FB 4** or **FB 5** in a test-tube for each test.

44	observations		
test	FB 4	FB 5	
Test 1 Add an equal volume of aqueous sodium carbonate.			
Test 2 Add aqueous ammonia.			
Test 3 Add a few drops of aqueous barium nitrate (or aqueous barium chloride).			
Test 4 Add an equal volume of dilute nitric acid. Allow to stand for one minute, then			
add a few drops of aqueous silver nitrate.			

[4]

(b) Carry out the following tests in boiling tubes and record your observations in the table. Use a 1 cm depth of **FB 4** or **FB 5** for each test.

toot	observations		
test	FB 4	FB 5	
Test 1 Add aqueous sodium hydroxide, then			
warm the mixture gently and carefully, then			
add one piece of aluminium foil to the mixture.			

- (c) Using the information given at the start of the question, select **one** further test to enable you to identify the anions present in each of **FB 4** and **FB 5**.
 - State the reagent(s) you will use for this test.
 - Explain why this test will enable you to identify the anions in **FB 4** and **FB 5**.
 - Carry out your test and record the observations.

reagent(s)	
explanation	
observations	

ſ	З	1

(d) Write the formulae of the anions and cations present in FB 4 and FB 5.If the tests you carried out did not allow you to identify the ion, write 'unknown'.

	FB 4: cation	anion	
	FB 5: cation	anion	
			[2]
(e)	Give the ionic equation for one precipitation react Include state symbols.		[1]
			[1]

[Total: 13]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Qualitative Analysis Notes

1 Reactions of aqueous cations

ian	reaction with			
ion	NaOH(aq)	NH ₃ (aq)		
aluminium, A <i>l</i> ³⁺(aq)	white ppt. soluble in excess	white ppt. insoluble in excess		
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_		
barium, Ba²⁺(aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.		
calcium, Ca²⁺(aq)	white ppt. with high [Ca²+(aq)]	no ppt.		
chromium(III), Cr³⁺(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess		
copper(II), Cu²⁺(aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution		
iron(II), Fe²⁺(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess		
iron(III), Fe³⁺(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess		
magnesium, Mg²⁺(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess		
manganese(II), Mn²⁺(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess		
zinc, Zn²⁺(aq)	white ppt. soluble in excess	white ppt. soluble in excess		

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻(aq)	gives white ppt. with Ag ⁺ (aq) (soluble in $NH_3(aq)$)
bromide, Br⁻(aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in $NH_3(aq)$)
iodide, I⁻(aq)	gives yellow ppt. with Ag⁺(aq) (insoluble in NH₃(aq))
nitrate, NO ₃ ⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO₂⁻(aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
sulfate, SO ₄ ²-(aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl_2	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint

Key atomic number atomic number atomic number atomic number atomic symboc name name solution atomic mass relative atomic mass solution atomic number atomic number atomic mass solution atomic mass atomic mass solution atomic mass atomic multiple atomic mass atomic mas <	2						The Per	iodic Table Group	The Periodic Table of Elements Group	ements		13	44	15	16	17	18
atomic number and muse metal/to aloring more metal/to aloring more metal/to aloring mor				Key			hydrogen 1.0										$_{\rm Helium}^{2}$
term of the elements term of the elements term of the elements term of the elements 22 23 24 5 6 7 8 9 10 11 12 200 13			ato	atomic number								5 5	° C	۲ N	8 0	Ц 6	10 Ne
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			rela	name ative atomic ma	SS							boron 10.8	carbon 12.0	nitrogen 14.0	oxygen 16.0	fluorine 19.0	neon 20.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		_										13	4 (15	16	17	18
		ო	4	S	9	7	œ	ი	10	11	12	A <i>l</i> aluminium 27.0	silicon 28.1	phosphorus 31.0	sulfur 32.1	C <i>l</i> chlorine 35.5	Ar argon 39.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		21	22	23		25		27	28	29	30	31	32	33	34	35	36
		Sc	F	>		Mn		ပိ	ïZ	Cu	Zn	Ga	Ge	As	Se	Br	Ъ
	SC	andium 45.0	titanium 47.9	vanadium 50.9		manganese 54.9		cobalt 58.9	nickel 58.7	copper 63.5	zinc 65.4	gallium 69.7	germanium 72.6	arsenic 74.9	selenium 79.0	bromine 79.9	krypton 83.8
$ \begin{array}{c cccc} Zr & Nb & Mo & Tc & Ru & Rh & Pd & Ag & Cd & In & Sn \\ ziccolum nolulum molydenum technetum turbanum toolum nolulum nolulum molydenum technetum turbanum toolum nolulum nolulum nolulum technetum turbanum tantatum tantatutatu tanta tantatutan tantatum tantatutat$		39	40	41		43		45	46	47	48	49	50	51	52	53	54
Zircontun Inobium Inobium Indexium		≻	Zr		Мо		Ru	RЪ	Ъd	Ag	Сq	In	Sn	Sb	Те	I	Xe
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		yttrium 88.9	zirconium 91.2		molybdenum 95.9		ruthenium 101.1	rhodium 102.9	palladium 106.4	silver 107.9	cadmium 112.4	indium 114.8	tin 118.7	antimony 121.8	tellurium 127.6	iodine 126.9	xenon 131.3
Hf Ta W Re Os Ir Pt Au Hg T1 Pb 178.5 180.9 188.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 178.5 180.9 188.2 190.2 192.2 195.1 197.0 204.4 207.2 104 105 106 107 108 109 110 111 112 114 207.2 104 105 106 107 108 109 110 111 112 114 207.2 104 105 106 107 108 109 110 111 112 114 207.2 104 105 108 108 108 108 109 111 112 114 207.2 104 P DS RQ Cn 111 112 114 207.2 105 G DS SG Cn		57-71	72		74		76	77	78	79	80	81	82	83	84	85	86
	lar	nthanoids	Η	Ъ	≥	Re	Os	Ir	Ŧ	Au	Hg	11	Pb	Bi	Ро	At	Rn
104 105 106 107 108 109 110 111 112 114 Rf Db Sg Bh Hs Mt Ds Rg Cn 113 114 utherfordum dubnum seaborgum bohrum massum meinenum dussum meinenum <thdussum< th=""> meinenum <thd< td=""><td></td><td></td><td>hafnium 178.5</td><td>tantalum 180.9</td><td>tungsten 183.8</td><td>rhenium 186.2</td><td>osmium 190.2</td><td>iridium 192.2</td><td>platinum 195.1</td><td>gold 197.0</td><td>mercury 200.6</td><td>thallium 204.4</td><td>lead 207.2</td><td>bismuth 209.0</td><td>polonium –</td><td>astatine -</td><td>radon -</td></thd<></thdussum<>			hafnium 178.5	tantalum 180.9	tungsten 183.8	rhenium 186.2	osmium 190.2	iridium 192.2	platinum 195.1	gold 197.0	mercury 200.6	thallium 204.4	lead 207.2	bismuth 209.0	polonium –	astatine -	radon -
Rf Db Sg Bh Hs Mt Ds Rg Cn - <t< td=""><td>õ</td><td>9-103</td><td>104</td><td>105</td><td>106</td><td>107</td><td>108</td><td>109</td><td>110</td><td>111</td><td>112</td><td></td><td>114</td><td></td><td>116</td><td></td><td></td></t<>	õ	9-103	104	105	106	107	108	109	110	111	112		114		116		
utherfordum dubnium seaborgum bohium leasum metherfun dubnium seaborgum bohium leasum metherfun dubnium seaborgum leasum metherfun dubnium seaborgum leasum metherfun dubnium seaborgum leasum metherfun domina seaborgum leasum metherfun domina seaborgum leasum metherfun domina leasum leasu	co	ctinoids	Ŗ	Db	Sg	Bh	Hs	Mt	Ds	Rg	С		Fl		L۷		
58 59 60 61 62 63 64 65 66 67 68 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er 140:1 140:9 144.4 - 150.4 152.0 157.3 158.9 162.5 164.9 167.3 90 91 92 93 94 95 96 97 98 99 107.3 150,00 710,00 91 92 93 94 95 96 97 98 91 167.3 150,00 91 92 96 97 98 91 167.3 167.3 167.3 100,000 91 92 96 97 98 99 107.3 100,000 91 92 96 97 98 99 97 99 99 97 99 97 99 97 107 107.3 <			rutherfordium -	dubnium –	seaborgium -	bohrium –	hassium -	meitnerium -	darmstadtium -	roentgenium -	copernicium -		flerovium -		livermorium –		
58 59 60 61 62 63 64 65 66 67 68 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er aerium praseodynium promethum smaatum europium gadointum techum dysprestum holmium erbum erbum eff 68 67 68																	
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er aerium preseodymium meodymium preseodymium prestyre preseodymium <		57	58	59	60	61	62	63	64	65	99	67	68	69	70	71	
certurn presecdymium promethum samarium europium geodinium eropium eropium eropium 140.1 140.9 144.4 - 150.4 152.0 157.3 158.9 162.5 164.9 167.3 90 91 92 93 94 95 96 97 98 99 167.3 70 140.4 - 152.0 157.3 158.9 162.5 164.9 167.3 90 91 92 94 95 96 97 98 99 100 700 73.00 73.00 167.3 158.9 167.5 167.9 167.3 70 90 91 95 96 97 98 99 100 700 73.00 73.00 23.00 23.00 23.00 23.00 23.00 23.00		La		Pr	Nd	Pm	Sm	Еu	g	Tb	D	Ч	ц	Тп	γb	Lu	
90 91 92 93 94 95 96 97 98 99 100 Th Pa U Np Pu Am Cm BK Cf Es Fm 232.0 233.0 91 Pu Am Cm BK Cf Es Fm 233.0 23.0	ar	nthanum 138.9		praseodymium 140.9	neodymium 144.4	promethium -	samarium 150.4	europium 152.0	gadolinium 157.3	terbium 158.9	dysprosium 162.5	holmium 164.9	erbium 167.3	thulium 168.9	ytterbium 173.1	Iutetium 175.0	
Th Pa U Np Pu Am Cm Bk Cf Es Fm anerticium uranium potoactinium pettaetinium americium curium berkelium californium einsteinium fermium fermium pettaetinium pett		89	06	91	92	93	94	95	96	97	86	66	100	101	102	103	
thorium protactinium uranium neptunium plutonium americium curium berkelium californium einsteinium fermium 232,0, 234,0, 238,0, 234,0, 238,0, 234,0, 238,0, 234,0, 238,0, 234,0, 238,0, 234,0, 238,0, 234,0, 238,0, 248,0, 238,0,		Ac	Th	Ра		Np	Pu	Am	СЗ	ВĶ	Ç	Es	Е'n	Md	No	Ļ	
0.00/ 0.00/	a D	ctinium –	thorium 232.0	protactinium 231.0	uranium 238.0	neptunium 	plutonium 	americium	curium	berkelium -	californium 	einsteinium –	fermium -	mendelevium 	nobelium -	lawren cium 	

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.