

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			ANDIDATE UMBER		

CHEMISTRY 9701/36

Paper 3 Advanced Practical Skills 2

October/November 2021

2 hours

You must answer on the question paper.

You will need: The materials and apparatus listed in the confidential instructions

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working, use appropriate units and use an appropriate number of significant figures.
- Give details of the practical session and laboratory, where appropriate, in the boxes provided.

INFORMATION

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.

Session			
	Laboratory		

For Examiner's Use		
1		
2		
3		
Total		

This document has 16 pages. Any blank pages are indicated.

Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

1 Solid **FB 1** is hydrated sodium carbonate, Na₂CO₃•**x**H₂O. You will determine the value of **x** in a sample of **FB 1**.

The experiment involves three steps:

- Step 1 React a known mass of sodium carbonate, FB 1, with an excess of acid.
- **Step 2** Dilute the products of **Step 1** to a known volume.
- Step 3 Carry out a titration to find out how much acid remained after the reaction in Step 1.

You will use the results of these three steps to find \mathbf{x} .

FB 1 is hydrated sodium carbonate, Na₂CO₃•**x**H₂O.

FB 2 is 0.800 mol dm⁻³ hydrochloric acid, HC1.

FB 4 is 0.100 mol dm⁻³ sodium hydroxide, NaOH.

bromophenol blue indicator

(a) Method

Step 1

- Label a burette FB 2 and fill this burette with FB 2.
- Run 50.00 cm³ of **FB 2** into the 250 cm³ beaker.
- Weigh the container with **FB 1**. Record the mass.
- Slowly, and in small portions, add **FB 1** to the acid.
- Stir the mixture until the fizzing has stopped. Leave the stirring rod in the beaker.
- Reweigh the container with any residue. Record the mass.
- Calculate and record the mass of **FB 1** added to the acid.

Step 2

- Stir the mixture from **Step 1** and ensure that all the solid has dissolved. Transfer this solution to the graduated flask.
- Rinse the beaker and stirring rod twice with distilled water, then add the washings into the graduated flask.
- Make the solution up to 250 cm³ with distilled water. Thoroughly mix the contents of the flask. This solution is **FB 3**.

Step 3

- Label the other burette **FB 4**. Fill this burette with **FB 4**.
- Pipette 25.0 cm³ of **FB 3** into a conical flask.
- Add several drops of bromophenol blue indicator.
- Perform a rough titration and record your burette readings in the space below.

The rough titre is	C	m ³
--------------------	---	----------------

- Carry out as many titrations as you think are necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of **FB 4** added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	
VIII	

[8]

(b) From your accurate titration results, calculate a suitable mean value to use in your calculations. Show clearly how you obtained this value.

25.0 cm³ of **FB 3** required cm³ of **FB 4**. [1]

Calcula	ations
---------	--------

(c) (i)	Give your answers to (c)(ii), (c)(iii), (c)(iv), and (c)(vi) to an appropriate number of significant figures.
(ii)	Calculate the number of moles of hydrochloric acid in the FB 2 used in Step 1.
	moles of HCl in FB 2 used in Step 1 = mol [1]
(iii)	Use your answer to (b) to calculate the number of moles of sodium hydroxide, FB 4 , required to react with 25.0 cm³ of FB 3 in Step 3 .
	moles of NaOH required = mol
	Use this answer to deduce the number of moles of hydrochloric acid in 250 cm³ of FB 3 . This is the number of moles remaining after the reaction in Step 1 .
	moles of HC l in 250 cm 3 of FB 3 = mol [1]
(iv)	Use your answers to (c)(ii) and (c)(iii) to calculate the number of moles of hydrochloric acid that reacted with sodium carbonate in FB 1 .
	moles of HC <i>l</i> that reacted with FB 1 = mol [1]
(v)	Write an equation for the reaction of sodium carbonate with hydrochloric acid in Step 1 . Include state symbols.
	[1]
(vi)	Use the equation and your answer to (c)(iv) to determine the moles of sodium carbonate present in FB 1.
	moles of $Na_2CO_3 = \dots mol$ [1]

()	vii)	Use your answer to (c)(vi) and your mass of FB 1 to calculate the formula mass of hydrated sodium carbonate. Hence find the value for x .
		(If you were unable to calculate the number of moles of Na_2CO_3 in (c)(vi) assume that it is 5.55×10^{-3} mol. This is not the correct value.)
		x = [2]
(d)	Sta	te the maximum error in a single balance reading.
		maximum error in a balance reading = g
		culate the maximum percentage error in the mass of FB 1 you used. ow your working.
		maximum percentage error = % [1]
(e)	A st	sudent decided to use a larger mass of FB 1 when carrying out the same method.
		at effect would this have on the titre volume in Step 3 ? lain your answer.
		[1]
		[Total: 19]

2 In this question you will determine the value of **y** in another sample of hydrated sodium carbonate by thermal decomposition.

The equation for the reaction which occurs is given below.

$$Na_2CO_3 \cdot yH_2O(s) \rightarrow Na_2CO_3(s) + yH_2O(g)$$

Solid **FB 5** is another sample of hydrated sodium carbonate, Na₂CO₃•**y**H₂O.

(a) Method

- Weigh the empty crucible with its lid. Record the mass.
- Transfer all the **FB 5** from its container into the crucible.
- Weigh the crucible, lid and **FB 5**. Record the mass.
- Calculate and record the mass of **FB 5** used.
- Place the crucible and contents on a pipe-clay triangle.
- Heat the crucible gently, with the lid on, for approximately 1 minute.
- Heat strongly, with the lid on, for a further 1 minute.
- Heat strongly, with the lid off, for a further 4 minutes.
- Allow the crucible to cool, with the lid on, for at least 5 minutes.

During the cooling period you may wish to start work on Question 3.

- When the crucible is cool, weigh the crucible with its lid and contents.
- Calculate and record the mass of the residue obtained and the mass lost during heating.

I III

[3]

Use your results to calculate a value for y .
y =[2]
Suggest one improvement to the method used in Question 2 which would lead to a more accurate value for y .
[1]
[Total: 6]

Qualitative analysis

Where reagents are selected for use in a test, the **name** or **correct formula** of the element or compound must be given.

At each stage of any test you are to record details of the following:

- colour changes seen
- the formation of any precipitate and its solubility in an excess of the reagent added
- the formation of any gas and its identification by a suitable test.

You should indicate clearly at what stage in a test a change occurs.

If any solution is warmed, a **boiling tube** must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests for ions present should be attempted.

- 3 (a) FB 6, FB 7 and FB 8 each contain one cation and one anion. All the cations and anions are different. All the cations and two of the anions are listed in the Qualitative Analysis Notes. FB 7 is an aqueous solution.
 - (i) Carry out the following tests and record your observations.

test	observations
Test 1 To a 1 cm depth of hydrogen peroxide in a test-tube, add a small spatula measure of FB 6.	
Test 2 To a 2 cm depth of aqueous potassium manganate(VII) in a test-tube, add the same depth of aqueous sodium hydroxide. Then add a small spatula measure of FB 6. Stir for about 30 seconds. Filter the mixture and collect the filtrate, then	
add dilute sulfuric acid to the filtrate.	

test	observations
Test 3 To a 1 cm depth of FB 7 in a test-tube, add an equal volume of hydrogen peroxide. Shake the tube, then	
add aqueous sodium hydroxide.	
Test 4 To a 1 cm depth of FB 7 in a test-tube, add a few drops of aqueous barium chloride or aqueous barium nitrate, then	
add dilute hydrochloric acid.	
Test 5 Place a small spatula measure of FB 8 into a hard-glass test-tube. Heat the contents.	
Test 6 Dissolve a small spatula measure of FB 8 in a 2 cm depth of distilled water in a test-tube. To the solution add a few drops of aqueous silver nitrate, then	
add aqueous ammonia.	

[7]

(ii) From your test results, identify the anions in **FB 6**, **FB 7** and **FB 8**. If the tests do not allow you to positively identify an anion, write 'unknown'.

	FB 6	FB 7	FB 8
formula of anion			

(b)	(b) Aqueous sodium hydroxide may be used to help in carry out tests on FB 7 and FB 8. Record your method, observations and conclusions		
	You are reminded that if any solution is warmed, a	boiling tube must be used.	
			_
		I	_
		П	-
		III	_
			-
		[4]	
(c)	(c) (i) From your observations, suggest a conclusion behaviour of FB 7 in Test 3 of (a)(i) . Explain your answer.	n that could be made about the chemical	
		[1]	
	(ii) Write an ionic equation for any precipitation real Include state symbols.	action you observed in (a)(i).	
		[1]	

[Total: 15]

BLANK PAGE

BLANK PAGE

BLANK PAGE

Qualitative Analysis Notes

1 Reactions of aqueous cations

ion	reaction with									
ion	NaOH(aq)	NH ₃ (aq)								
aluminium, A <i>l</i> ³+(aq)	white ppt. soluble in excess	white ppt. insoluble in excess								
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_								
barium, Ba²+(aq)	faint white ppt. is nearly always observed unless reagents are pure	no ppt.								
calcium, Ca²+(aq)	white ppt. with high [Ca²+(aq)]	no ppt.								
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess	grey-green ppt. insoluble in excess								
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution								
iron(II), Fe²+(aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess								
iron(III), Fe³+(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess								
magnesium, Mg²+(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess								
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess								
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess								

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq))
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))
nitrate, NO ₃ -(aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result				
ammonia, NH ₃	turns damp red litmus paper blue				
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)				
chlorine, Cl ₂	bleaches damp litmus paper				
hydrogen, H ₂	'pops' with a lighted splint				
oxygen, O ₂	relights a glowing splint				

The Periodic Table of Elements

			_		_					_			С			- ~		_	_				
18	2	He	heliun 4.0	10	Š	neon	20.2	18	Ā	argor 39.9	36	조	krypto 83.8	54	×	xenor 131.3	86	R	rador				
17				6	ш	fluorine	19.0	17	Cl	chlorine 35.5	35	ģ	bromine 79.9	53	Н	iodine 126.9	82	Ą	astatine -				
16				80	0	oxygen	16.0	16	ഗ	sulfur 32.1	34	Se	selenium 79.0	52	<u>e</u>	tellurium 127.6	84	Ъ	molouinm —	116	^	livermorium	ı
15				7	z	nitrogen	14.0	15	₾	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	: <u>.</u>	bismuth 209.0				
14				9	ပ	carbon	12.0	41	S	silicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Pb	lead 207.2	114	F1	flerovium	ı
13				2	В	boron	10.8	13	Αl	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	<i>1</i> L	thallium 204.4				
										12	30	Zu	zinc 65.4	48	පි	cadmium 112.4	88	Нg	mercury 200.6	112	ပ်	copernicium	ı
										1	29	D O	copper 63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium	ı
										10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	귙	platinum 195.1	110	Ds	darmstadtium	ı
										6	27	රි	cobalt 58.9	45	돈	rhodium 102.9	11	'n	iridium 192.2	109	¥	meitnerium	1
	_	I	hydrogen 1.0							œ	26	Fe	iron 55.8	44	Ru	ruthenium 101.1	92	SO	osmium 190.2	108	Hs	hassium	ı
										7	25	M	manganese 54.9	43	ပ	technetium -	75	Re	rhenium 186.2	107	Bh	pohrium	ı
					loc		SS			9	24	ပ်	chromium 52.0	42	Мо	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium	ı
			Key	tomic number	mic sym	name	tive atomic ma			2	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Та	tantalum 180.9	105	Ор	dubnium	ı
				to	ato	-	rela			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	꿒	rutherfordium	ı
										က	21	Sc	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89–103	actinoids		
2				4	Be	benyllium	9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	Š	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium	1
_				3	:=	lithium	6.9	1	Na	sodium 23.0	19	×	potassium 39.1	37	윉	rubidium 85.5	55	Cs	caesium 132.9	87	ъ́	francium	1
	13 14 15 16	13 14 15 16 17	13 14 15 16 17 H	13 14 15 16 17 17 18 19 17 19 19 19 19 19 19	2 13 14 15 16 17 17 17 18 18 19 17 17 18 19 19 19 19 19 19 19	2 13 14 15 16 17 17 17 18 18 19 19 17 18 19 19 19 19 19 19 19	2 13 14 15 16 17 17 17 18 18 19 19 17 18 19 19 19 19 19 19 19	1 1 1 1 1 1 1 1 1 1	13 14 15 16 17 17 18 18 19 17 18 18 19 19 19 19 19 19	1 1 1 1 1 1 1 1 1 1	2 13 14 15 16 17 17 18 19 19 19 19 19 19 19	2 13 14 15 16 17 17 18 19 19 19 19 19 19 19	2 13 14 15 16 17 17 18 19 19 19 19 19 19 19	2 13 14 15 16 17 18 18 19 19 19 19 19 19	2 1 1 1 1 1 1 1 1 1	1	1 2 2 3 4 5 6 7 7 7 7 7 7 7 7 7	1	1	The control of the	1	1	1

Lu Lu	lutetium 175.0	103	۲	lawrencium -
o ₅ AY	ytterbium 173.1	102	Š	nobelium
mL Tm	thulium 168.9	101	Md	mendelevium -
® 可	erbium 167.3	100	Fm	fermium -
67 Ho	holmium 164.9	66	Es	einsteinium –
® Dy	dysprosium 162.5	86	Ç	californium —
es Tb	terbium 158.9	26	益	berkelium -
² PO	gadolinium 157.3	96	Cm	curium —
Eu Eu	europium 152.0	92	Am	americium -
62 Sm	samarium 150.4	94	Pn	plutonium —
Pm	promethium -	93	Δ	neptunium -
° PZ	neodymium 144.4	95	\supset	uranium 238.0
59 P	praseodymium 140.9	91	Ра	protactinium 231.0
Se Se	cerium 140.1	06	Ļ	thorium 232.0
57 La	lanthanum 138.9	88	Ac	actinium -

lanthanoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.