

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE Chemistry (8CH0) Paper 01 Core Inorganic and Physical Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number P70801 Publications Code 8CH0_01_2206_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Mark
1	The only correct answer is D $(1s^2 2s^2 2p^6 3s^2 3p^6)$	
	A is not correct because two electrons have been removed instead of added to the sulfur atom	
	B is not correct because this is the electronic configuration of the sulfur atom	
	C is not correct because this is the incorrect electronic configuration of the sulfur atom	

(Total for Question 1 = 1 mark)

Question Number	Answer	Mark
2	The only correct answer is C (503 965 3458 4530)	(1)
	A is not correct because there is no significant rise from 2 nd to 3 rd IE, therefore not a Group 2 element	
	B is not correct because there is a significant rise between 1 st and 2 nd IEs, indicating a Group 1 element	
	D is not correct because there is a significant rise from 3 rd to 4 th IE, indicating a Group 3 element	

(Total for Question 2 = 1 mark)

Question Number	Acceptable Answer		Additional Guidance	Mark
3 (a)	An answer that makes reference to the following points:		Allow the three errors in any order	(3)
	 first error: 'emitted' and correction: replace with 'absorbed' 	(1)		
	 second error: 'ions (move up)' and correction: remove 'ions' replace with 'electron(s)' 	(1)	The mark is for replacement by 'electron(s)' Allow 'electron(s) in ions'	
	 third error: 'is always' and correction: remove 'always' replace with 'may be / sometimes' 	(1)	Allow expression that implies that the radiation can be emitted as visible light, e.g. 'usually' visible light	
			Do not award 'the error is lower energy levels' replace with return to ground state	

Question Number	Answer	Mark
3 (b)	The only correct answer is C (sodium iodide)	(1)
	A is not correct because calcium in calcium chloride gives a 'brick red' flame	
	B is not correct because lithium in lithium carbonate gives a 'crimson red' flame	
	D is not correct because strontium in strontium bromide gives a 'red' flame	

Question Number	Answer	Mark		
3 (c)	The only correct answer is D (Platinum)			
	A is not correct because copper will give a flame colour			
	B is not correct because iron is insufficiently inert			
	C is not correct because magnesium will burn with a white flame			

Question Number	Answer		Mark
3 (d)(i)	• silver nitrate (solution) / chlorine	Allow correct formula/AgNO ₃ If both name and formula are given both must be correct Allow acidified silver nitrate (solution) Ignore addition of nitric acid Do not award sulfuric acid / hydrochloric acid	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
3 (d)(ii)	An answer that makes reference to		(2)
	the following points:		
	 cream/off-white precipitate (1) 	Do not accept just 'white' or 'yellow'	
		Accept (very) pale yellow	
	• AgBr (1)		
		Ignore name Ignore unbalanced equation	
		Award (2) marks for use of chlorine:	
		orange / brown fumes / solution	
		Br ₂ (gas / aq)	
		Allow TE (2) marks for use of conc. sulfuric acid in 3di	
		choking fumes	
		SO ₂ (g)	

(Total for Question 3 = 8 marks)

Question Number	Answer	Mark
4 (a)	The only correct answer is C (p = 1, n = 2, e = 1)	(1)
	A is not correct because the number of protons (p) and neutrons (n) are reversed, and the number of electrons is incorrect	
	B is not correct because an atom of ³ H contains one electron	
	D is not correct because the number of protons (p) and neutrons (n) are reversed, and an atom of ³ H contains only one electron	

Question Number	Acceptable Answer		Additional Guidance	Mark
4 (b)(i)			Example of calculation	(2)
	• relative abundance of missing isotope (³⁷ Cl)	(1)	(100 – 75.5) = 24.5	
	 relative height of missing peak 	(1)	<u>82.5 x 24.5</u>	
			75.5 = 26.772	
			lgnore SF except 1 SF DNA incorrect rounding for M2 Correct answer with no working scores (2) TE on M1	

Question Number	Acceptable Answer	Additional Guidance	Mark
4 (b)(ii)		Allow a specific illustration using these 3 combinations	(1)
	 (there are) three (possible) combinations of the two isotopes in chlorine molecules/Cl₂ 	$^{35}Cl^{35}Cl = 70$ $^{35}Cl^{37}Cl = 72$ $^{37}Cl^{37}Cl = 74$	

Question Number	Acceptable Answer		Additional Guidance	Mark
4 (b)(iii)			Example of calculation	(3)
	• probability of two ³⁵ Cl atoms	(1)	³ ⁄ ₄ x ³ ⁄ ₄ = 9/16 = 0.5625	
	• probability of ³⁵ Cl and ³⁷ Cl atoms	(1)	2 x ¾ x ¼ = 6/16 = 2 x 0.1875 = 0.36995	
	• probability of two ³⁷ Cl atoms	(1)	¼ x ¼ = 1/16 = 0.0625 (so ratio is 9:6:1)	
			Allow alternative explanations and calculations but the logic must be clear. e.g. probability tree (3 max)	
			measurement of peak heights from graph (2 max) eg 3.8:2.4:0.4 = ratio 9:6:1 (approx.)	

Question Number	Acceptable Answer	Additional Guidance	Mark
4 (c)(i)			(1)
	 relative molecular mass 	170	
		May be shown on graph	
		Do not award peak at 171	

Question Number	Acceptable Answer	Additional Guidance	Mark
4 (c)(ii)	• C ₁₂ H ₂₆	Allow TE from (c)(i) provided H/C could exist eg DNA 57 = C ₄ H ₉ Allow C ₁₃ H ₁₄	(1)

Question Number	Acceptable Answer		Additional Guidance	Mark
4 (d)	An answer that makes reference to the following points:		Example of calculation	(4)
	 calculation of moles of carbon/carbon dioxide 	(1)	Moles of carbon dioxide = 3.14 ÷ 44 = 0.071364 (mol) Moles of carbon = 0.071364 (mol)	
	 calculation of moles of water 	(1)	Moles of water = 1.29 ÷ 18 = 0.071667 (mol)	
	 calculation of moles of hydrogen 	(1)	Moles of hydrogen = 0.071667 x 2 = 0.14333 (mol)	
	• calculation of empirical formula	(1)	Ratio of moles C:H = 0.071364:0.14333 = 1:2.(001) Empirical formula = CH ₂ TE on M4 for lost M3 (no x2), so CH TE on moles of C and H	

(Total for Question 4 = 13 marks)

Question Number	Acceptable Answer	Additional Guidance	Mark
5 (a)	• 222 (K)	allow answers in the range 200 to 240 (K)	(1)

Question Number	Answer	Mark
5 (b)	The only correct answer is B (50 °C)	(1)
	A is not correct because 40 °C would imply much greater disruption to the intermolecular forces	
	C is not correct because two side groups would be expected to provide more disruption to intermolecular forces	
	D is not correct because the trend (caused by side groups) is to lower the boiling temperature	

Question Number	Accepta	ble Answer	Additional Guidance	Mark
5 (c)	Choose an item. This question assesses a str coherent and logically struc	5	Guidance on how the mark scheme should be applied:	(6)
	linkages and fully-sustained Marks are awarded for indi how the answer is structure reasoning. The following table shows h	d reasoning. cative content and for ed and shows lines of	The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning,	
	be awarded for indicative c Number of indicative marking points seen in	ontent. Number of marks awarded for indicative	scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning).	
	answer 6 5-4	marking points 4 3	If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	
	3-2 1 0	2 1 0		
	The following table shows h be awarded for structure a	nd lines of reasoning. Number of marks awarded for structure and sustained lines of	In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks, and 3 or 4 indicative points would get 1 mark for reasoning, and 0, 1 or 2 indicative points would score zero marks for reasoning.	
	Answer shows a coherent and logical structure with	reasoning 2		

linkages and fully sustained lines of reasoning demonstrated throughout.		If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s).
Answer is partially structured with some linkages and lines of reasoning.	1	
Answer has no linkages between points and is unstructured.	0	Example of suitable diagram
Indicative content:		approx. 180°
IP1 hydrogen bonding betwee and methanol/solute	en water/solvent	CH ₃ CH ₃
• IP2 suitable diagram		approx. 180°
		Allow either/both hydrogen bond(s). Allow any number of hydrogen bonds, if all correct.
• IP3 same strength/comparable in either component on its ow	-	O-H-O bond angle must be approx. 180° (either in diagram or mentioned in text) Ignore lone pair and dipole

Or

hydrogen bonding is present in methanol and in water

- IP4 hydration of Na⁺ and Cl⁻
- IP5 suitable diagram of at least one ion

Allow 'solvation/hydration of the ions', provided it is clear that both ions are included.

Example of suitable diagram

allow solvation/hydration by any number of water molecules ≽1 If dipole shown on water, must be correct

 IP6 the ionic bonding is stronger than the bonding between sodium and/or chloride ions and methanol

(Total for Question 5 = 8 marks)

Question Number	Acceptable Answer			Additional Guidance				
6 (a)					1		(2)	
			Substance	Structure	Bonding	Melting		
	 any two correct 	(1)				temperature / K		
			silicon(IV)	(giant)	(covalent)	1883		
	 additional two 	(1)	oxide					
	correct		potassium chloride	giant	ionic	1043		
			iron	giant	(metallic)	1808		
			iodine	simple molecular	(covalent)	387		
			Allow just mole	ecular for iodine s	structure			

Question Number	Acceptable Answer	Additional Guidance	Mark	
6 (b)	An explanation that makes reference to the following points:			(3)
	 silicon(IV) oxide/ silicon dioxide (is a giant structure therefore) contains many (strong covalent) bonds 	(1)	Allow silicon oxide	
	 iodine – (only) weak intermolecular / London forces/bonds must be broken 	(1)	Do not award covalent bonds are broken Accept dispersion force / instantaneous dipole-induced dipole / van der Waals	
	 more energy is required to break the stronger bonds in silicon(IV) oxide/ silicon dioxide (hence higher melting temperature) 	(1)	Allow reverse argument M3 can be awarded even if M2 is incorrect	

Question Number	Accentable Answer		Additional Guidance	Mark
6 (c)				(3)
	 molten/liquid potassium chloride conducts because it contains ions that can move (so they carry charge) 	(1)		
	 (in solid and molten state iron conducts) because it contains delocalised electrons (that move and carry charge) 	(1)		
	 solid potassium chloride contains ions in a solid lattice so they cannot move (and carry charge). 	(1)		

(Total for Question 6 = 8 marks)

Question Number	Answer	Mark
7 (a)	The only correct answer is D (Be, Rb, Ba and Ra)	(1)
	A is not correct because chlorine is in Group 7 therefore it is a p block element	
	B is not correct because cobalt is a transition element therefore it is a d block element	
	C is not correct because aluminium is a Group 3 element therefore it is a p block element	

Question Number	Answer	Mark
7 (b)	The only correct answer is B (solubility of sulfates decreases and solubility of hydroxides increases down group 2)	(1)
	A is not correct because the solubility of Group 2 sulfates deceases down the group	
	C is not correct because the solubility of Group 2 hydroxides increases down the group	
	D is not correct because the solubility of Group 2 sulfates decreases down the group and the solubility of Group 2 hydroxides increases down the group	

Question Number	Acceptable Answer	Additional Guidance	Mark
7 (c)(i)	 dot-and-cross diagram 	Allow diagrams with all dots/all crosses etc Allow lone pairs with electrons separated Ignore covalent bonds (if shown) 'extra' electron may be shown as different shape, colour etc. The double bond can be to any of the three oxygens	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
7 (c)(ii)	An answer that makes reference to the following points:	Example of equation	(1)
	 balanced equation 	$2\text{LiNO}_3 \rightarrow \text{Li}_2\text{O} + 2\text{NO}_2 + \frac{1}{2}\text{O}_2$	
		Allow multiples of equation Ignore state symbols even if incorrect	

Question Number	Acceptable Answer		Additional Guidance	Mark
7 (c)(iii)	An answer that makes reference to the following points:		<u>Example of calculation</u> Ignore SF for M1, M2, M3 except 1SF, penalise once only	(4)
	• calculation of moles of sodium nitrate	(1)	Moles of sodium nitrate = 0.5÷85 = 5.8824 x10 ⁻³ (mol)	
	 calculation of moles of oxygen 	(1)	Moles of oxygen gas $O_2 = 5.8824 \times 10^{-3} \div 2$ = 2.9412 x10 ⁻³ (mol)	
	 substitution in <i>pV</i> = <i>nRT</i> and rearrangement 	(1)	pV = nRT $V = \frac{nRT}{p} = \frac{2.9412 \times 10^{-3} \times 8.31 \times 298}{101000}$	
	• final answer to 2SF only and in cm ³	(1)	(= 7.21136 x 10 ⁻⁵ m ³) =72 (cm ³) If M2 not divided by 2 then final answer = 140 cm ³ – scores (3) marks. 144 cm ³ – scores (2) marks. Correct final answer with no working scores (4) Allow TE throughout	

Question Number	Acceptable Answer	Additional Guidance	Mark
7 (c)(iv)			(1)
	 incomplete reaction / decomposition 	Ignore pressure not 101 kPa	
		or	
		temperature not 298 K	
		Do not award reversible reaction /	
		impure reactant or product /	
		oxygen soluble in water / side	
		reactions	

Question Number	Acceptable Answer		Additional Guidance	Mark
7 (d)	An answer that makes reference to the following points:			(3)
	 Group 2 ions have larger charge (than Group 1 ions) Or Group 2 ions have a 2+ charge and Group 1 ions have a 1+ charge 	(1)	Allow the charge density of Group 2 ions is larger (than Group 1 ions) Allow reversed argument for Group 1 ions Ignore reference to size	
	• Group 2 ions polarise bonds in the carbonate ion more (effectively)	(1)	Allow distort / polarise	
	 the C–O/C=O bond is weakened 	(1)		

(Total for Question 7 = 12 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
8 (a)	 calculation of total of moles of gas in product 	(1)	Example of calculation Moles of HCl = $40 \div 24000$ = 1.6667 x 10 ⁻³ / 0.0016667	(2)
	 calculation using Avogadro number to find number of molecules 	(1)	1.6667 x 10^{-3} x 6.02 x 10^{23} = 1.0033 x 10^{21} For MP2, allow TE on moles of HCl Ignore SF	
			Penalise rounding errors once only	

Question Number	Acceptable Answer	Additional Guidance	Mark
8(b)(i)	An answer that makes reference to the following		(1)
	points:		
	 the covalent bond in hydrogen chloride changes tc 	Both types of bond required	
	an ionic bond in aqueous solution	Accept covalent bond breaks, ions are	
		formed	
		Accept	
		HCl(g) → H ⁺ (aq) + Cl ⁻ (aq)	
		or	
		$HCl(g) + H_20(l) \rightarrow H_3O^+(aq) + Cl^-(aq)$	

Question Number	Acceptable Answer		Additional Guidance	Mark
8(b)(ii)			Example of equation:	(2)
	• correct species on each side of equation	(1)	HCl(g) + NH ₃ (g) → NH ₄ Cl(s) / NH ₄ ⁺ Cl ⁻ (s) / NH ₄ ⁺ (s) + Cl ⁻ (s)	
	 correct states for all species 	(1)	Allow (aq) or (g) for reactants Do not award (liquid) for either reactant Two products will lose both marks	

Question Number	Acceptable Answer		Additional Guidance	Mark
8(b)(iii)	An answer that makes reference to the following points:		Allow observations in any order	(2)
	• first observation	(1)	Sodium carbonate/Na ₂ CO ₃ /(white) solid dissolves/disappears/forms a colourless solution	
	 second observation 	(1)	Effervescence/fizzing/bubbles Ignore gas/carbon dioxide given off Do not award if any named gas other than carbon dioxide, eg hydrogen or oxygen	

Question Number	Acceptable Answer		Additional Guidance	Mark
8 (b)(iv)	A description that makes reference to the following points:			(5)
	 remove a fixed amount of one solution using a pipette into a conical flask and fill up the burette with other solution 	(1)	Allow use of any suitable flask in place of conical flask.	
	 add a named indicator and colour change 	(1)	Allow any recognised acid/base indicator: methyl red / orange, phenolphthalein etc. Ignore litmus /UI. Do not award reversed colour change	
	 add solution from burette to flask until indicator changes colour 	(1)	Do not penalise reverse colour change again here.	
	• technique mark	(1)	Any one from: Rinsing burette/pipette with appropriate solution, use of white tile, adding slowly, swirling flask etc.	
	 repeat titrations (until concordant results obtained) 	(1)	lgnore mention of 'rough' or 'trial' runs etc	

Question Number	Acceptable Answer	Additional Guidance	Mark
8 (c)(i)		Example of half-equation	(1)
	 half-equation 	$2CI^{-} \rightarrow CI_2 + 2e^{(-)}$	
		Allow multiples Allow $2CI^{-} - 2e^{(-)} \rightarrow CI_{2}$ Ignore state symbols even if incorrect DNA reverse equation	

Question Number	Acceptable Answer		Additional Guidance	Mark
8 (c)(ii)	An answer that makes reference to the following points:		Example of calculation	(4)
	• calculation of moles of HCl	(1)	(5.0 x 5.0)÷1000 = 0.025 / 2.5 x 10 ⁻² (mol)	
	 calculation of theoretical moles of Cl₂ produced 	(1)	0.025÷4 = 0.00625 /6.25 x 10 ⁻³ (mol)	
	• calculation of theoretical volume of Cl ₂	(1)	0.00625 x 24000 = 150 (cm ³)	
	 calculation of % yield and 	(1)	% yield = (70÷150) x 100	
	comparison with expected yield		= 46.7/47(%) and	
			less than expected / did not achieve expected yield / expected yield is 75% of 150 =112.5 cm ³	
			Allow calculation of actual moles of Cl ₂ for MP3, then calculation of yield based on moles for MP4:	
			$70 \div 24000 = 2.9167 \times 10^{-3} \text{(mol)}$	
			then % yield and comparison for MP4 (2.9167 x10 ⁻³ ÷ 0.00625) x 100 = 46.7/47(%)	
			Ignore SF except 1 Allow TE at each stage	

Question Number	Acceptable Answer		Additional Guidance	Mark
8 (d)(i)	An answer that makes reference to the following points			(2)
	 recognises/states that disproportionation reactions contain one element that is both reduced and oxidised 	(1)	Allow answers in terms of just Chlorine i.e. Chlorine is both oxidised and reduced Do not award: Chlorine molecule both oxidised and reduced	
	 identifies the relevant oxidation number changes in chlorine 	(1)	Cl changes from 0 in Cl ₂ to -1 in NaCl and 0 in Cl ₂ to +5 in NaClO ₃ Allow oxidation numbers shown on equation	

Question Number	Acceptable Answer	Additional Guidance	Mark
8 (d)(ii)	An answer that makes reference to the following points	Example of calculation	(3)
	• all molar masses correct (1)	NaClO ₃ = 106.5 NaCl = 58.5 H ₂ O = 18 Allow calculation of molar masses of left-hand side Cl ₂ = 71, NaOH = 40	
	• correct use of multiples (1)	(5 x 58.5 and 1 x 106.5 and 3 x 18) or (3 x 71 and 6 x 40) M1 and M2 may be combined: total molar mass = 453	
	• calculation of atom economy (1)	= 106.5 x 100 ÷ ((5 x 58.5) + 106.5 + (3 x 18)) = 23.51% Ignore SF except 1 SF TE on molar masses and multiples	

(Total for Question 8 = 22 marks)

Question Number	Acceptable Answer		Additional Guidance	Mark
9 (a)	An answer that makes reference to the following points:		Example of calculations	(2)
	• calculation of mass of carbon required	(1)	Moles of water = moles of carbon Moles of carbon =1000000 \div 18 = 55556 / 5.5556 x 10 ⁴ Mass of carbon = 55556 x12 \div 10 ³ = 672 / 666.67 (kg) Answer depends on no of SF used for moles of carbon. Check.	
	 calculation of total mass of reactants and mass of reactants = mass of products OR mathematical expression of total mass of 	(1)	Mass of reactants = mass of products = 1000 + 666.72 = 1666.7 (kg)	
	reactants/products	(1)	1000(<u>18 + 12</u>) 1000 <u>(28 + 2)</u> 18 or 18	
	• evaluation	(1)	1666.7 (kg) Ignore SF except 1 SF Allow TE throughout Correct answer with no working scores (2)	

Question Number	Acceptable Answer		Additional Guidance	Mark
9 (b)	An answer that makes reference to the following points:		(5)	
	limewater turns cloudy	(1)		
	• identifies carbon dioxide	(1)		
	• anhydrous copper(II) sulfate turns (from white to) blue	(1)		
	• identifies water	(1)		
	• the U tube should be placed before the boiling tube	(1)	Distinguishes water as product of combustion from water originating from the limewater	

(Total for Question 9 = 7 marks)

Total for Paper = 80 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom