Please check the examination details below before entering your candidate information			
Candidate surname	Other names		
Centre Number Candidate			
	ference 8CH0/01		
Chemistry Advanced Subsidiary PAPER 1: Core Inorganic and Physical Chemistry			
You must have: Scientific calculator, Data Booklet	Total Marks		

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.
- For the question marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically, showing the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over 🕨

Answer ALL questions.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- 1 Which is the electronic configuration for the S²⁻ ion?
 - **A** 1s² 2s² 2p⁶ 3s² 3p²
 - **B** $1s^2 2s^2 2p^6 3s^2 3p^4$
 - **C** $1s^2 2s^2 2p^6 3p^6$
 - **D** $1s^2 2s^2 2p^6 3s^2 3p^6$

(Total for Question 1 = 1 mark)

2 Which is the most likely sequence of values, in kJ mol⁻¹, for the first four ionisation energies of barium?

\mathbf{X}	Α	1000	2251	3361	4564
X	В	496	4563	6913	9544
X	С	503	965	3458	4530
X	D	578	1817	2745	11578

(Total for Question 2 = 1 mark)

(3)

3	This question is about tests for ions.

(a) A student wrote the following answer to a question about the processes that can give rise to a flame colour during a flame test of an inorganic compound.

"When an inorganic compound is heated, energy is emitted as ions move up energy levels. Electrons return to lower energy levels and release energy as light which is always in the visible region of the electromagnetic spectrum."

Identify **three** errors in this account. Include in your answers a correct word or phrase that should be used instead.

First error

Correct word or phrase

Second error

Correct word or phrase

Third error

Correct word or phrase

		ompound does not give a red colour in a flame test?	
\mathbf{X}	А	calcium chloride	(1)
\times	В	lithium carbonate	
\mathbf{X}	с	sodium iodide	
\times	D	strontium bromide	
(c) A v	vire is	used for a flame test.	
Wh	nich n	naterial would be most suitable for a flame test wire?	
\times	Α	copper	(1)
\mathbf{X}	В	iron	
\times	С	magnesium	
\mathbf{X}	D	platinum	
(ii)		e the expected result of this test and the formula of the product. It of test	(2)
(ii)	Resu		(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

- **4** This question is about isotopes, mass spectra and hydrocarbons.
 - (a) Hydrogen has three isotopes, ¹H, ²H and ³H.

Which is the correct number of subatomic particles in ³H?

		Number of subatomic particles		
		Protons Neutrons Electro		Electrons
\mathbf{X}	Α	2	1	2
\mathbf{X}	В	1	2	0
\mathbf{X}	С	1	2	1
\mathbf{X}	D	2	1	3

(b) The diagram shows the mass spectrum of a sample of chlorine with one peak missing.

Chlorine has two isotopes, ³⁵Cl and ³⁷Cl, and a relative atomic mass of 35.5

(1)

(i)	The relative abundance of the isotope ³⁵ Cl is 75.5%.	
	The relative peak height of this isotope is 82.5 in the mass spectrum.	
	Calculate the relative peak height of the missing peak caused by the isotope $\frac{37}{2}$	
	isotope ³⁷ Cl.	(2)
(**)		
(11)	Give a reason for the presence of the three peaks at 70, 72 and 74.	(1)
(:::)) Evaluing calculations, why there is an expressionate ratio of $0.6.1$ for the	
(iii)) Explain, using calculations, why there is an approximate ratio of 9:6:1 for the peak heights corresponding to the <i>m</i> / <i>z</i> values of 70, 72 and 74.	
(iii)) Explain, using calculations, why there is an approximate ratio of 9:6:1 for the peak heights corresponding to the m/z values of 70, 72 and 74.	(3)
(iii)		(3)
	peak heights corresponding to the m/z values of 70, 72 and 74.	
	peak heights corresponding to the m/z values of 70, 72 and 74.	
	peak heights corresponding to the m/z values of 70, 72 and 74.	
	peak heights corresponding to the m/z values of 70, 72 and 74.	
	peak heights corresponding to the m/z values of 70, 72 and 74.	
	peak heights corresponding to the m/z values of 70, 72 and 74.	
	peak heights corresponding to the <i>m</i> / <i>z</i> values of 70, 72 and 74.	
	peak heights corresponding to the <i>m</i> / <i>z</i> values of 70, 72 and 74.	
	peak heights corresponding to the <i>m</i> / <i>z</i> values of 70, 72 and 74.	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(d) 1.00 g of a different hydrocarbon, W, was burnt in oxygen.
 Analysis of the combustion products showed that complete combustion produced 3.14 g of carbon dioxide and 1.29 g of water.

Water and carbon dioxide were the only products of combustion.

Calculate the **empirical** formula of hydrocarbon **W**. You **must** show your working.

(4)

9

BLANK PAGE

- **5** Intermolecular forces affect melting temperatures, boiling temperatures and solubility.
 - (a) The table gives the melting temperatures of some Group 7 hydrogen halides.

Compound	Melting temperature / K
HF	190
HCl	158
HBr	185

Predict the melting temperature, in K, of hydrogen iodide, HI, using the information in the table.

(1)

Melting temperature of HIK

(b) The compounds in the table are isomers.

Compound	Structural formula	Boiling temperature / °C
hexane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	69
2-methylpentane	CH ₃ CH ₂ CH ₂ CHCH ₃ CH ₃	61
3-methylpentane	CH ₃ CH ₂ CHCH ₂ CH ₃ CH ₃	63

Which is most likely to be the boiling temperature of another isomer, 2,2-dimethylbutane?

The structure of 2,2-dimethylbutane is

P 7 0 8 0 1 A 0 1 1 2 8

☑ A 40°C

- B 50°C
- ☑ C 60°C

☑ D 70°C

DO NOT WRITE IN THIS AREA

(1)

 *(c) Methanol, CH₃OH, is miscible with water in all proportions. Sodium chloride is much less soluble in methanol than in water. Explain these statements using your knowledge of the interactions betwee solutes and solvents. You must use diagrams to illustrate your answers. 	n (6)

P 7 0 8 0 1 A 0 1 2 2 8

DO NOT WRITE IN THIS AREA

(Total for Question 5 = 8 marks)

DO NOT WRITE IN THIS AREA

6 The table shows some information about the structure and bonding in four substances.

(a) Complete the table.

(2)

Substance	Structure	Bonding	Melting temperature / K
silicon(IV) oxide	giant	covalent	1883
potassium chloride			1043
iron		metallic	1808
iodine		covalent	387
			·

(b) Explain why the melting temperature of silicon(IV) oxide is much higher than that of iodine, even though the bonding in both is covalent.

(3)

	 (c) Iron and potassium chloride both conduct electricity when molten. However, only iron conducts electricity when solid. 	,
	Explain these observations.	(3)
	(Total for Question 6 = 8 ma	ırks)

7 This question is about s-block elements and some of their compounds.

- (a) Which list contains only s-block elements?
 - 🖾 A Li, Na, Mg and Cl
 - **B** K, Ca, Co and Rb
 - C Mg, Al, Sr and Ba
 - D Be, Rb, Ba and Ra
- (b) Which pair of statements describes the trends **down** Group 2?

		Solubility of sulfates	Solubility of hydroxides
\mathbf{X}	Α	increases	increases
\mathbf{X}	В	decreases	increases
\mathbf{X}	с	decreases	decreases
\mathbf{X}	D	increases	decreases

- (c) The s-block nitrates undergo thermal decomposition.
 - (i) Draw a dot-and-cross diagram for the nitrate(V) ion, NO_3^- , showing outer electrons only.

(1)

(1)

(ii) Write an equation for the thermal decomposition of lithium nitrate.

State symbols are **not** required.

(1)

(iii) The equation for the thermal decomposition of sodium nitrate is different from that for lithium nitrate.

 $NaNO_3(s) \rightarrow NaNO_2(s) + \frac{1}{2}O_2(g)$

The gas produced is collected in a gas syringe.

Calculate the theoretical volume of gas, in **cm**³, that could be collected at 298K and 101 kPa by the decomposition of 0.500 g of pure sodium nitrate. Give your answer to 2 significant figures.

 $[pV = nRT, R = 8.31 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}]$

(4)

calculated theoretical volume. Assume that no gas escapes and measurements have been made accurately.	
	(1)
d) A touth only states (The thermal stability of Group 1 couperates is some welly bigher	
d) A textbook states, 'The thermal stability of Group 1 carbonates is generally higher than the thermal stability of Group 2 carbonates in the same period'.	
Explain why Group 1 carbonates are more thermally stable than Group 2 carbonates.	
	(3)
(Total for Question 7 = 12 ma	rks)

- 8 This question is about some reactions of chlorine and hydrogen chloride.
 - (a) When hydrogen gas and chlorine gas are mixed and passed over a hot platinum catalyst, hydrogen chloride gas is formed.

The equation for this reaction is

 $H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$

In an experiment, 20 cm^3 of dry hydrogen gas was reacted with 20 cm^3 of dry chlorine gas.

All gas volumes were measured at room temperature and pressure (r.t.p.).

Calculate the number of gas molecules in the product at r.t.p.

[Molar volume of a gas at r.t.p. = $24000 \text{ cm}^3 \text{ mol}^{-1}$ Avogadro constant (*L*) = $6.02 \times 10^{23} \text{ mol}^{-1}$]

(2)

(i)	Hydrogen chloride gas does not conduct electricity. Hydrochloric acid is a good conductor of electricity.	
	Give a reason for this change in conductivity.	(1)
(ii)	When concentrated hydrochloric acid on a glass rod is held above a concentrated ammonia solution, a white smoke is observed.	
	Write an equation, including state symbols, for the reaction that produces the white smoke.	
		(2)
(:::)	Hudrochlaric acid is added to a tast tube containing a comple of	
(111)	Hydrochloric acid is added to a test tube containing a sample of solid sodium carbonate.	
	Give two observations.	(2)
		(-)

(iv) Describe an experiment to enable you to accurately determine the concentration of an approximately 1 mol dm ⁻³ solution of hydrochloric acid, using a solution of sodium hydroxide of concentration 1.00 mol dm ⁻³ . Details of the calculation are not required.	
Details of the calculation are not required.	(5)
	21 Turn over

Turn over 🕨

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c) Chlorine can be produced by reacting concentrated hydrochloric acid with manganese(IV) oxide.

The equation for this reaction is

 $4HCl(aq) + MnO_2(s) \rightarrow MnCl_2(aq) + Cl_2(g) + 2H_2O(l)$

(i) Deduce the half-equation for the formation of chlorine.

(ii) A student reacted 5.0 cm³ of 5.0 mol dm⁻³ hydrochloric acid with an excess of manganese(IV) oxide. 70 cm³ of chlorine gas was produced.

The teacher said the expected percentage yield of the experiment is 75%.

Determine whether the student achieved the expected percentage yield.

[Molar volume of a gas at r.t.p. = $24000 \text{ cm}^3 \text{ mol}^{-1}$]

(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(d) Chlorine reacts with hot concentrated aqueous sodium hydroxide to produce sodium chlorate(V) as one of the products.

The equation for this reaction is

 $3Cl_2 \ + \ 6NaOH \ \rightarrow \ 5NaCl \ + \ NaClO_3 \ + \ 3H_2O$

(i) Explain, using oxidation numbers, why this is a disproportionation reaction.

(2)

(ii) Calculate the atom economy, by mass, of sodium chlorate(V) in this reaction.

(3)

(Total for Question 8 = 22 marks)

DO NOT WRITE IN THIS AREA

- **9** Water gas is a fuel gas consisting of a mixture of carbon monoxide and hydrogen.
 - (a) Water gas is produced by passing steam over white hot coke.

The equation for the reaction is shown.

 $H_2O(g) \ + \ C(s) \ \rightarrow \ CO(g) \ + \ H_2(g)$

Calculate the total mass of products when 1000 kg of steam reacts completely.

(2)

(b) The complete combustion of water gas produces carbon dioxide and water. A student drew a diagram of the apparatus to attempt to identify the combustion products.

Evaluate whether the student's apparatus is suitable for identifying both of the combustion products. Include any improvements needed.

(5)

TOTAL FOR PAPER = 80 MARKS

P 7 0 8 0 1 A 0 2 6 2 8

BLANK PAGE

0 (8)	(18) 4.0 helium 2	20.2 Ne neon 10 39.9 Ar 18	83.8 Kr krypton 36	131.3 Xe xenon 54	[222] Rn radon 86	ted		
٢	(17)	19.0 F fluorine 9 35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 I iodine 53	[210] At astatine 85	oeen repor	175 Lu lutetium 71	[257] Lr lawrencium 103
9	(16)	16.0 0 8 32.1 5 sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	[209] Po polonium 84	-116 have l nticated	173 Yb ytterbium 70	[254] NO nobelium 102
ъ	(15)	14.0 N Introgen 7 31.0 P Phosphorus 15	74.9 AS arsenic 33	121.8 Sb antimony 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated	169 Tm thulium 69	[256] Md mendelevium 101
4	(14)	12.0 C carbon 6 Silicon 14	72.6 Ge germanium 32	118.7 Sn tin 50	207.2 Pb lead 82	atomic nu but not f	167 Er erbium 68	[253] Fm fermium 100
m	(13)	10.8 B boron 5 27.0 Al aluminium	69.7 Ga gallium 31	114.8 In indium 49	204.4 Tl thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated	165 Ho holmium 67	[254] ES einsteinium 99
		(12)	65.4 Zn ^{zinc} 30	112.4 Cd cadmium 48	200.6 Hg mercury 80		163 Dy dysprosium 66	[251] Cf californium 98
		(11)	63.5 Cu ^{copper} 29	107.9 Ag silver 47	197.0 Au gold 79	[272] Rg roentgenium 111	159 Tb terbium 65	[245] BK berketium 97
		(10)	58.7 Ni nickel 28	106.4 Pd palladium 46	195.1 Pt platinum 78	[271] Ds damstadtium 110	157 Gd gadolinium 64	[247] Cm aunum 96
2 5 -		(6)	58.9 Co cobalt 27	102.9 Rh rhodium 45	192.2 Ir iridium 77	[268] Mt neitnerium 109	152 Eu europium 63	[243] Am americium 95
	1.0 hydrogen	(8)	55.8 Fe iron 26	101.1 Ru ruthenium	190.2 Os osmium 76	[277] Hs hassium 108	150 Sm samarium 62	[242] Pu 94
) - -		(L)	54.9 Mn manganese 25	[98] Tc technetium 43	186.2 Re rhenium 75	[264] Bh bohrium 107	[147] Pm promethium 61	[237] Np neptunium 93
		bol bul uumber (6)	52.0 Cr chromium 24	95.9 [98] Mo TC molybdenum technetium 42 43	183.8 V tungsten 74	[266] Sg seaborgium 106	141 144 [147] Pr Nd Pm praceodymium neodymium promethium 59 60 61	238 U uranium 92
	Key	relative atomic mass atomic symbol ^{name} atomic (proton) number (4) (5) (6)	50.9 V vanadium 23	92.9 ND niobium 41	180.9 Ta tantalum 73	[262] Db dubnium 105	141 Pr 59	[231] Pa protactinium 91
		atomic atomic (4)	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf rutherfordium 104	140 Ce cerium 58	232 Th thorium 90
		(3)	45.0 Sc scandium 21	88.9 Y yttrium 39	138.9 La* lanthanum 57	[227] AC* actinium 89	S	
2	(2)	9.0 Be beryllium 4 24.3 Mg magnesium	40.1 Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium 56	[226] Ra radium 88	* Lanthanide series * Actinide series	
~	E	6.9 Li Li 1 3 3 3 3 0 5 3.0 2 3.0 2 3.0 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr francium 87	* Lanth * Actini	

P 7 0 8 0 1 A 0 2 8 2 8