wjec cbac

GCE AS MARKING SCHEME

SUMMER 2019

AS (NEW) CHEMISTRY - UNIT 2 2410U20-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

UNIT 2: ENERGY, RATE AND CHEMISTRY OF CARBON COMPOUNDS

MARK SCHEME

GENERAL INSTRUCTIONS

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only

- ecf = error carried forward
- bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

	Question	Marking dataila			Marks a	available		
G	luestion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
1		Br		1		1		
2		$\begin{array}{l} Mg(s) \ + \ C(s) \ + \ 1^{\prime}_{2}O_{2}(g) \ \rightarrow \ MgCO_{3}(s) \\ \\ award \ (1) \ for \ reactants \ and \ product \\ \\ award \ (1) \ for \ balancing \ and \ state \ symbols \ - \ only \ if \ reactants \ and \\ \\ products \ correct \end{array}$	2			2		
3		 award (1) for either of following B can exist in <i>E-Z</i> forms because each of the double bonded carbon atoms has two different groups attached to it A cannot exist in <i>E-Z</i> forms because (one of) the double bonded carbon atoms has two groups attached to it which are the same B is <i>Z</i>-but-2-ene (1) award (1) for 2-methylpropene if isomer A chosen 		2		2		
4		C_3H_7Br is hydrolysed most rapidly (1) because the C—Br bond is the weakest (of the C-halogen) bonds (1)	2			2		1

	Questi	on	Marking dataila				Marks a	vailable		
	Questi	on	Marking details		AO1	AO2	AO3	Total	Maths	Prac
5	(a)		addition		1			1		
	(b)		CH ₃ H C F CH ₃			1		1		
6			$C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_5OH$ ignore state symbols		1			1		
				Section A total	6	4	0	10	0	1

Section B

	Ques	tion	Marking dataila			Marks a	vailable		
	Ques	suon	Marking details	AO1	AO2	AO3	Total	Maths	Prac
7	(a)	(i)	moles CaO = $\frac{1.90}{56}$ = 0.0339 (1)					1	
			moles HCI = $\frac{50 \times 1.40}{1000}$ = 0.070 (1)					1	
			0.07 mol HCl would neutralise 0.035 mol CaO so acid in excess (1)		3		3		3
		(ii)	4284.5		1		1		
		(iii)	$\frac{mc\Delta T}{m} / \frac{4284.5}{n.0339} $ (1) -126.4 kJ mol ⁻¹ both sign and value needed (1)		2		2	1	
		(iv)	Hess diagram shown with arrows in correct direction (1) ignore products of reactions $\Delta_r H = 126.4 - 196 = -69.6 \text{ kJ mol}^{-1} \qquad (1)$ (using value given in question 110 - 196 = -86 kJ mol ⁻¹)		2		2	1	
		(v)	 award (1) each for any two of following suitable apparatus to minimise heat losses e.g. lid/ polystyrene container thermometer reading to 0.1°C / graduations to allow reading to less than 0.5°C use a burette since it can be read to 0.05 cm³ 			2	2		2

Question	Marking dataila			Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
<i>(b)</i> (i)	$CH_3OH(I) + 1\frac{1}{2}O_2(g) \rightarrow CO_2(g) + 2H_2O(I)$ ignore state symbols, do not allow multiples		1		1		
	liquid in burner with flame (1) thermometer in water and suitable container (1) thermometer water	2			2		2

0	tion	Marking dataila	Marks available								
Ques	uon	Marking details	AO1	AO2	AO3	Total	Maths	Prac			
(c)	(i)	bonds broken (C=C) + 4(C—H) + 3(O=O) = 614 + 4(C—H) + 1485 (1)									
		bonds made 4(C=O) + 4(O—H) = 3196 + 1860 = 5056 (1)									
		2099 + 4(C—H) – 5056 = –1387 (1)									
		average C—H bond enthalpy = $\frac{1570}{4}$ = 392.5 / 393 kJ mol ⁻¹ (1)		4		4	3				
	(ii)	ethene is a gas / not a liquid			1	1		1			
		Question 7 total	2	13	3	18	7	8			

	0	4 1 o 10	Merking dataila			Marks a	vailable		
	Ques	tion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
8	(a)		at higher concentration, more particles in a given volume / particles closer together (1) more frequent collisions / more chance of collisions (1)	2			2		
	(b)	(i)	using expts 1 and 2 - when [NO] doubled (1) rate increases by factor of 4 / rate α [NO] ² (1) or using expts 1 and 3 - when [NO] trebled (1) rate increases by factor of 9 / rate α [NO] ² (1)			2	2	2	
		(ii)	using expts 2 and 4 when [O ₂] doubled (1) rate stays the same / rate unaffected by [O ₂] (1)			2	2	2	
		(iii)	 monitor changes in volume of gas / use a gas syringe / monitor changes in pressure / use a manometer (1) reagents have more moles of gas (1) or use a colorimeter (1) since NO₂ is brown/coloured (1) 			2	2		2

Question	Marking dataila			Marks a	vailable		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(iv)	 award (1) each for any two of following NO/NO₂/CO are toxic CO₂ contributes to greenhouse effect / global warming NO₂/NO_x contribute to acid rain 		2		2		
(v)	exhaust (1) award (1) for any of following heterogenous a transition metal / a transition metal compound palladium / platinum / rhodium 	2			2		
(c)	shape of curve (1) lower activation energy with catalyst / shown on graph (1) more collisions / molecules have energy greater than activation energy (1)	3			3		
	Question 8 total	7	2	6	15	4	2

	0	4 1 o 10	Marking dataila			Marks a	available		
	Ques	tion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
9	(a)	(i)	reflux (1)						
			to avoid loss of reagents / products / solvent (1)	2			2		2
		(ii)	distillation (1)						
			boiling temperature of ester is lower than alcohol/acid (1)	2			2		2
		(iii)	(conc) sulfuric acid	1			1		1
		(iv)	reagents						
			$CH_3CH_2CH(OH)CH_3 + HCOOH (1)$						
			products						
			$H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{2}C$ H		2		2		

Oursetien		Maukina dataila						Marks a	available		
Question		Marking details				AO1	AO2	AO3	Total	Maths	Prac
(b)	 acidified potassium of accept acidified pota iodine and sodium hy - yellow precipita award (1) for correct √/× award (1) for correct √/× 	escence / fizzing / bubbles lichromate - orange to green ssium manganate(VII) - purp ydroxide / potassium iodide a	le to col and sodin first test second t	um chlor æst	ate(I)		5		5		5
	Reagent(s)	Observation expected for positive result	butan-2-ol	2-methylpropanoic acid	3-hydroxybutanoic acid						
	Na ₂ CO ₃	effervescence / fizzing / bubbles	×	\checkmark	\checkmark						
	Mg	effervescence / fizzing / bubbles	×	\checkmark	\checkmark						
	acidified potassium dichromate	orange to green	\checkmark	×	\checkmark						
	acidified potassium manganate(VII)	purple to colourless	\checkmark	×	\checkmark						
	iodine and sodium hydroxide	yellow precipitate	\checkmark	×	\checkmark						
			Qı	uestion	9 total	5	7	0	12	0	10

Question	Marking dataila			Marks a	available		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
10 (a)	Indicative content • alkanes and alkenes both contain C and H • C and H have similar electronegativities • there are no dipoles in either alkanes or alkenes • alkenes have double bonds and are much more reactive • due to high electron density of π bond • caused by p-p sideways overlap • alkanes are saturated whilst alkenes are unsaturated • this makes alkenes susceptible to electrophilic addition • alkanes need light to react • by radical substitution 5-6 marks Explanation of difference in reactivity of alkanes and alkenes in term The candidate constructs a relevant, coherent and logically structured accossustained and substantiated line of reasoning is evident and scientific conv 3-4 marks Explanation of lack of dipoles; reference to alkenes as being reactive The candidate constructs a coherent account including many of the key elective linking of key points and use of scientific conventions and vocabulary is 1-2 marks Some knowledge of the different reactivities of alkanes and alkenes The candidate attempts to link relevant points from the indicative content. material. There is some evidence of appropriate use of scientific convention 0 marks The candidate does not make any attempt or give an answer worthy of creanel	6 as of π bon bount including timentions and the and alka ements of the s generally s Coherence bons and voc	d; referen ng key eler d vocabular nes as be ne indicative sound.	ce to diffe nents of the ry is used a ing unrea e content.	6 rent react e indicative accurately f	ion mecha content. A hroughout.	nisms ident in

Questien	 the aldehyde is being oxidised to a carboxylic acid and reduced to an alcohol the aldehyde gains oxygen forming a carboxylic acid and gains hydrogen forming an alcohol 			Marks a	available		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
<i>(b)</i> (i)	 the aldehyde is being oxidised to a carboxylic acid and reduced to an alcohol the aldehyde gains oxygen forming a carboxylic acid and gains 			1	1		
	this should make 0.0448 mol of $C_6H_5CH_2OH$ (1)		3		3	2	
(iii)	$2C_6H_5CHO + NaOH \rightarrow C_6H_5CH_2OH + C_6H_5COONa$			1	1		
	Question 10 total	6	3	2	11	2	0

	Overtier	Mauking dataila			Marks a	vailable		
	Question	Marking details	A01	AO2	AO3	Total	Maths	Prac
11	(a)	Empirical formula percentage oxygen = 53.33 (1)		1				
		C: H: O $\frac{40.0}{12} : \frac{6.67}{1.01} : \frac{53.33}{16} \Rightarrow 1: 2: 1 \Rightarrow CH_2O (1)$		1				
		Mass spectrum $M_r = 90$ (1) molecular formula C ₃ H ₆ O ₃ (1)		1				
		m/z of a fragment linked to identity of fragment (1) e.g. CH_3^+ at 15, $COOH^+/$ $CH_3CH(OH)^+$ at 45, OH^+ at 17			1			
		IR spectrum peak in range 1650 to 1750 due to C=O (1) peak in range 2500 to 3200 / 3200 to 3550 due to O—H (1)		1				
		¹ HNMR 4 hydrogen environments / ratio of 1 : 1 : 1 : 3 (1)			1			
		any δ value linked to group (1) e.g. 1 to 1.5 due to CH ₃ , 2.5 to 3.0 due to CH ₃ CH, 4.0 due to RCOH, 12.5 due to C=OOH			1			
		Identification X is CH ₃ CH(OH)COOH / 2-hydroxypropanoic acid			1	10		
		do not accept 3-hydroxypropanoic acid						

Question	Marking details		Marks available						
Question			AO2	AO3	Total	Maths	Prac		
<i>(b)</i> (i)	ignore peak heights accept any sensible approach to labelling peaks award (1) for peak labelled CH ₃ C =O at 160 to 185			1					
	award (1) for peak labelled CH_2O at 50 to 90 award (1) for peak labelled $CH_3C=O$ at 20 to 50			1 1	3				
	e.g. $f(H_3) = 0$ $C_{H_3} = 0$								
(ii)	nothing can be deduced from peak size of ¹³ C	1			1				
	Question 11 total	1	6	7	14	0	0		

UNIT 2: ENERGY, RATE AND CHEMISTRY OF CARBON COMPOUNDS

Question	A01	AO2	AO3	Total	Maths	Prac
Section A	6	4	0	10	0	1
7	2	13	3	18	7	8
8	7	2	6	15	4	2
9	5	7	0	12	0	10
10	6	3	2	11	2	0
11	1	6	7	14	0	0
Totals	27	35	18	80	13	21

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

2410U20-1 AS Chemistry - Unit 2 MS Summer 2019/DM