

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/11
Paper 1 Pure Mather	natics 1 (P1)		May/June 2018
			1 hour 45 minutes
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

BLANK PAGE

(i)	
	Given that the coefficient of x^2 in the expansion of $(1 + ax + 2x^2)(1 - 2x)^5$ is 12, find the value constant a .

	1			ange of the y-		
		•••••				•••••
•••••					••••••	
••••••		••••••	••••••	••••••	••••••	•••••
					••••••	•••••
						•••••
••••••••••	•••••		••••••	••••••••••	••••••	•••••
••••••	•••••	••••••	••••••	••••••	••••••	
		••••••				

point at which	the curve intersection of the curve intersection.	cts the x -axis.			
	•••••	•••••			•••••
•••••	•••••	•••••	•••••	•••••	•••••
		•••••	•••••		
•••••	•••••	•••••	•••••	••••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••

 •••••
•••••
•••••

		tion ($\sin \theta$						
•••••		•••••	•••••	•••••	••••••••••	•••••	••••••	•••••
••••••		••••••	•••••	••••••	••••••	•••••	••••••	••••••
•••••	••••••	••••••	••••••	••••••		••••••	••••••	••••••
		•••••		•••••		•••••	••••••	
•••••		••••••	•••••	•••••		•••••	•••••	•••••
				•••••				
•••••		•••••	•••••	•••••	••••••	••••••	•••••	•••••
•••••	•••••	••••••	•••••	••••••	••••••	••••••	•••••	••••••
		••••••		•••••		•••••		•••••

The diagram shows a kite OABC in which AC is the line of symmetry. The coordinates of A and C are (0, 4) and (8, 0) respectively and O is the origin.

(i)	Find the equations of AC and OB .	[4]	
		•••••	
		•••••	
		•••••	
		•••••	
		•••••	
		•••••	
		•••••	
		•••••	

6

The diagram shows a circle with centre O and radius r cm. The points A and B lie on the circle and AT is a tangent to the circle. Angle $AOB = \theta$ radians and OBT is a straight line.

(i)	Express the area of the shaded region in terms of r and θ .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

 ••••••
••••••
 ••••••
•••••
 •••••
•••••
•••••
•••••

7	Relative to	an origin O.	the position	vectors of the	points A , B	and C are	given by
,	itelative to	un ongm o,	tile position	vectors or the	pomis 11, D	una c une	51101101

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}.$$

(i)	Find \overrightarrow{AC} .	[1]
(ii)	The point M is the mid-point of AC . Find the unit vector in the direction of \overrightarrow{OM} .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

•••	
•	
•••	
• • •	
•	
••	
• •	
• • •	
• • •	
•••	
•	
• •	
•••	

(i)	Find an expression, in terms of p , q and n , for S_n .
(ii)	Given that $S_4 = 40$ and $S_6 = 72$, find the values of p and q .

λ	9	Functions f and	g are defined for $x \in \mathbb{R}$
-----------	---	-----------------	--------------------------------------

$$f: x \mapsto \frac{1}{2}x - 2,$$

$$g: x \mapsto 4 + x - \frac{1}{2}x^{2}.$$

(i)	Find the points of intersection of the graphs of $y = f(x)$ and $y = g(x)$.	[3]
		•••••
		•••••
		•••••
		•••••
(ii)		
(11)	Find the set of values of x for which $f(x) > g(x)$.	[2]
(11)	Find the set of values of x for which $f(x) > g(x)$.	[2]
(11)		[2]
	Find the set of values of x for which $f(x) > g(x)$.	[2]
(11)		[2]
(11)		[2]
(11)		[2]
(11)		[2]
(••)		[2]

(iii)	Find an expression for $fg(x)$ and deduce the range of fg.	[4]
	function h is defined by h: $x \mapsto 4 + x - \frac{1}{2}x^2$ for $x \ge k$.	
(iv)	Find the smallest value of <i>k</i> for which h has an inverse.	[2
		••••••

Show that the curve has no stationary points.
Denoting the gradient of the curve by m , find the stationary value of m and determine
, , , , , , , , , , , , , , , , , , ,

(iii)	Showing all necessary working, find the area of the region enclosed by the curve, the x -axis and the line $x = 6$. [4]

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.