

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		
MATHEMATICS						9709/13
Paper 1 Pure M	athematics	1 (P1)			Ма	y/June 2018
					1 hour	r 45 minutes
Candidates ansv	ver on the (Question Pa	aper.			
Additional Mater	ials: Li	st of Formu	ılae (MF9)			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

 ••••••
• • • • • • • • • • • • • • • • • • • •
••••••
•••••
 •••••
•••••
••••••
 ••••••
• • • • • • • • • • • • • • • • • • • •

2

Find the coefficient of $\frac{1}{x}$ in the expansion of $\left(x - \frac{2}{x}\right)^3$.	[3]

percentage of the sum to infinity, giving your answer correct to 2 significant figures.	[5
	••••••
	••••••
	••••••
	•••••
	•••••
	•••••
	••••••
	••••••
	•••••

hat $f'(x) = (3x - 1)^{-\frac{1}{3}}$. Find the y-coordinate of B.	[

The diagram shows a triangle OAB in which angle $OAB = 90^{\circ}$ and $OA = 5$ cm. The arc AC is par of a circle with centre O . The arc has length 6 cm and it meets OB at C . Find the area of the shaded region.

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •

6

The coordinates of points A and B are (-3k-1, k+3) and (k+3, 3k+5) respectively, where k is a

			ving that it is indep		
•••••					
••••					
•••••		•••••	•••••	••••••	•••••
			•••••		•••••
Find and si	mplify the equa	tion of the pern	endicular hisector (of <i>AB</i>	
Find and si	mplify the equa	tion of the perp	endicular bisector (
				of <i>AB</i> .	
				of <i>AB</i> .	
				of <i>AB</i> .	
				of <i>AB</i> .	
				of <i>AB</i> .	
				of <i>AB</i> .	
				of <i>AB</i> .	
				of <i>AB</i> .	
				of <i>AB</i> .	

7	(a)	(i)	Express $\frac{\tan^2 \theta - 1}{\tan^2 \theta + 1}$ in the form $a \sin^2 \theta + b$, where a and b are constants to be found. [3]
				•••
				•••
				•••
				•••
				•••
				•••
				•••
		(;;)	Hence, or otherwise, and showing all necessary working, solve the equation	
		(11)		
			$\frac{\tan^2\theta - 1}{\tan^2\theta + 1} = \frac{1}{4}$	
			for $-90^{\circ} \le \theta \le 0^{\circ}$.	2]
				•••
				•••
				•••

(b)

The diagram shows the graphs of $y = \sin x$ and $y = 2\cos x$ for $-\pi \le x \le \pi$. The graphs intersect at the points A and B.

(i)	Find the <i>x</i> -coordinate of <i>A</i> .	[2]
		••••
		••••
		••••
		••••
		••••
		••••
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	[2]
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	[2]
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	[2]
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	
(ii)	Find the <i>y</i> -coordinate of <i>B</i> .	
(ii)	Find the y-coordinate of B.	[2]
(ii)	Find the y-coordinate of B.	
(ii)	Find the y-coordinate of B.	

	Find the equation of the tangent at A .
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	
••	

(ii)	The function f is defined by $f(x) = x^3 - 9x^2 + 24x - 12$ for $x > k$, where k is a constant. Find the smallest value of k for f to be an increasing function. [2]

The diagram shows a pyramid OABCD with a horizontal rectangular base OABC. The sides OA and AB have lengths of 8 units and 6 units respectively. The point E on OB is such that OE = 2 units. The point E of the pyramid is 7 units vertically above E. Unit vectors E i, E and E are parallel to E0, E0 and E0 respectively.

(i)	i) Show that $\overrightarrow{OE} = 1.6\mathbf{i} + 1.2\mathbf{j}$.	[2]
(ii)	i) Use a scalar product to find angle <i>BDO</i> .	[7]

10	The	e one-one function f is defined by $f(x) = (x-2)^2 + 2$ for $x \ge c$, where c is a cons	stant.
	(i)) State the smallest possible value of c .	[1]
	In pa	parts (ii) and (iii) the value of c is 4.	
	(ii)) Find an expression for $f^{-1}(x)$ and state the domain of f^{-1} .	[3]

Solve the equation $ff(x) = 51$, giving your answer in the form $a + \sqrt{b}$.	
	•••••••••••
	••••••
	••••••
	••••••••••

11

The diagram shows part of the curve $y = (x + 1)^2 + (x + 1)^{-1}$ and the line x = 1. The point A is the minimum point on the curve.

(i)	Show that the x-coordinate of A satisfies the equation $2(x+1)^3 = 1$ and find the exact value of $\frac{d^2y}{dx^2}$ at A. [5]
	dx-

hrough 360° about the <i>x</i> -axis.	

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.