

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

May/June 2020

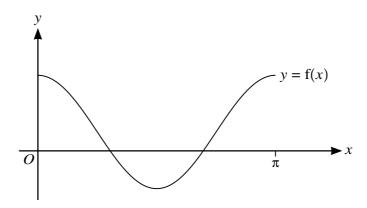
1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.


INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

Fi	nd the first term and the common difference of the progression.	
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		
••••		

2	The coefficient of $\frac{1}{x}$ in the expansion of $\left(kx + \frac{1}{x}\right)^5 + \left(1 - \frac{2}{x}\right)^8$ is 74.	
	Find the value of the positive constant k .	[5]

selli	ing price of the necklace in the year 2000 was \$36 000.
(a)	Write down an expression for the selling price of the necklace n years later and hence find the selling price in 2008. [3]
(b)	The company that makes the necklace only sells one each year. Find the total amount of money obtained in the ten-year period starting in the year 2000. [2]

The diagram shows the graph of y = f(x), where $f(x) = \frac{3}{2}\cos 2x + \frac{1}{2}$ for $0 \le x \le \pi$.

(a)	State the range of f.	[2]
		••••••

A function g is such that g(x) = f(x) + k, where k is a positive constant. The x-axis is a tangent to the curve y = g(x).

(b)	State the value of k and hence describe fully the transformation that maps the curve $y = f(x)$ to $y = g(x)$.	or [2]
		••••
		••••
		••••
		•••••
		••••

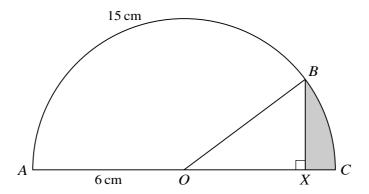
(c)	State the equation of the curve which is the reflection of $y = f(x)$ in the x-axis. Give your ans in the form $y = a \cos 2x + b$, where a and b are constants.	wer

	Given that the line is a tangent to the curve, express m in terms of c .	[3]
,	Given that the line is a tangent to the early, express m in terms of c.	LJ.
		• • • • • • • • • •
		•••••
		••••••
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c	
•	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	urve a
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	
	Given instead that $m = -4$, find the set of values of c for which the line intersects the c two distinct points.	

6	Functions	f and	g are	defined	for <i>x</i>	$\in \mathbb{R}$ by
---	-----------	-------	-------	---------	--------------	---------------------

$$f: x \mapsto \frac{1}{2}x - a,$$

$$g: x \mapsto 3x + b,$$


$$g: x \mapsto 3x + b$$

where a and b are constants.

(a)	Given that $gg(2) = 10$ and $f^{-1}(2) = 14$, find the values of a and b .	[4]
		••••••
		•••••
		•••••
		•••••
		•••••
(b)	Using these values of a and b , find an expression for $gf(x)$ in the form $cx + d$, where c and constants.	d <i>d</i> are [2]
		•••••
		•••••
		•••••
		•••••

coso	1 + 3111 0	coso	Prove the identity	
	•••••	•••••		
 •••••				
 	•••••••	•••••		
 	,			
 		•••••		

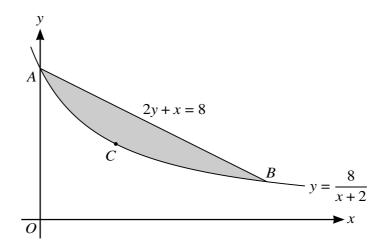
	Ience solve the equation	$\cos \theta$	$1 + \sin \theta$	$\sin \theta$			
••		•••••	•••••		••••••	•••••	•••••
						••••	
••						•••••	•••••
••							•••••
•••							•••••
••		•••••	•••••			•••••	•••••
• •			•••••			•••••	· • • • • • •
••			•••••			•••••	· • • • • • •
•••		•••••	••••••	•		•••••	•••••
••			•••••			•••••	· • • • • • •
••			•••••			•••••	
• •			•••••			•••••	· • • • • • •
•••	••••••	••••••	••••••	•••••	••••••	•••••	•••••
••							•••••
••		••••••	••••••	•••••	••••••	•••••	•••••

In the diagram, ABC is a semicircle with diameter AC, centre O and radius 6 cm. The length of the arc AB is 15 cm. The point X lies on AC and BX is perpendicular to AX.

Find the perimeter of the shaded region BXC .	[6]

The equation of a curve is $y = (3 - 2x)^3 + 24x$.

9


(a)	Find expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

•••••												
			••••••	••••••	••••••	••••••	•••••	•••••	•••••	••••••	•••••	••••••
•••••		•••••	•••••	•••••	••••••	•••••	•••••				•••••	••••••
•••••	••••••	•••••	•••••	••••••	••••••	•••••	•••••	••••••	•••••	•••••	••••••	•••••
											•••••	
•••••	••••••		•••••	••••••	••••••	•••••	•••••		•••••	•••••		•••••
•••••	••••••		•••••	••••••	•••••	•••••	•••••			•••••		•••••
	•••••		•••••	•••••	••••••	•••••	•••••			•••••		•••••
	••••••		•••••	•••••	•••••	•••••	•••••		•••••			•••••
							•••••					
•••••	•••••		•••••		•••••	•••••	•••••		•••••	•••••		•••••
			•••••	•••••	•••••		•••••					•••••
					•••••		•••••					•••••
termin	e the n	ature (of each	ı static	onary p	oint.						[2
					•••••							
							•••••					
							•••••					
	ermin	termine the n	termine the nature	termine the nature of each	termine the nature of each station	termine the nature of each stationary p	termine the nature of each stationary point.					

10 The coordinates of the points A and B are (-1, -2) and (7, 4) respectively.

Find the equation of the circle, C , for which AB is a diameter.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

•••••
•••••
•••••
••••••

The diagram shows part of the curve $y = \frac{8}{x+2}$ and the line 2y + x = 8, intersecting at points A and B. The point C lies on the curve and the tangent to the curve at C is parallel to AB.

(a)	Find, by calculation, the coordinates of A , B and C .	[6]
		••••••
		••••••
		•••••

through 360° about the <i>x</i> -axis	S.					
	•••••	••••••	••••••		••••••	•••••
						•••••
		••••••			•••••	
					•••••	
		••••••	••••••	•••••••••	••••••	•••••
	••••••	•••••	•••••		•••••	••••••
						•••••
		•••••				•••••
						•••••
	•••••	•••••	••••••		•••••	•••••
					•••••	

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.