

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/22

Paper 2 Pure Mathematics 2

May/June 2022

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

Given that y =	$=\frac{\ln x}{x^2}$, find the exac	dx	cπ <i>x</i> – c.		[3]
••••••	•••••	•••••	••••••	•••••	•••••
		•••••	•••••	•••••	
		•••••	•••••	•••••	
				•••••	
		•••••	••••••	•••••	
		•••••	••••••	•••••	
		•••••	•••••	•••••	•••••
					•••••
	•••••	•••••	••••••	••••••	••••••

2	(a)	Sketch, on the same diagram, the graphs of $y = 2x - 9 $ and $y = 5x - 3$.	[2]

(b)	Solve the equation $ 2x - 9 = 5x - 3$.	[2]
		· · · · · · ·
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

]	Find the exact gradient of the curve at the point $(0, \frac{1}{6}\pi)$.	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

	Use the trapezium rule with three intervals to show that the value of $\int_{1}^{4} \ln x dx$ is approximal ln 12.
(b)	Use a green of u - In u to show that In 12 is an under estimate of the two value of [4] In u du
(b)	Use a graph of $y = \ln x$ to show that $\ln 12$ is an under-estimate of the true value of $\int_{1}^{4} \ln x dx$
(b)	Use a graph of $y = \ln x$ to show that $\ln 12$ is an under-estimate of the true value of $\int_{1}^{4} \ln x dx$
(b)	Use a graph of $y = \ln x$ to show that $\ln 12$ is an under-estimate of the true value of $\int_{1}^{4} \ln x dx$
(b)	Use a graph of $y = \ln x$ to show that $\ln 12$ is an under-estimate of the true value of $\int_{1}^{4} \ln x dx$
(b)	Use a graph of $y = \ln x$ to show that $\ln 12$ is an under-estimate of the true value of $\int_{1}^{4} \ln x dx$
(b)	Use a graph of $y = \ln x$ to show that $\ln 12$ is an under-estimate of the true value of $\int_{1}^{4} \ln x dx$
(b)	Use a graph of $y = \ln x$ to show that $\ln 12$ is an under-estimate of the true value of $\int_{1}^{4} \ln x dx$
(b)	Use a graph of $y = \ln x$ to show that $\ln 12$ is an under-estimate of the true value of $\int_{1}^{4} \ln x dx$
(b)	Use a graph of $y = \ln x$ to show that $\ln 12$ is an under-estimate of the true value of $\int_{1}^{4} \ln x dx$
(b)	Use a graph of $y = \ln x$ to show that $\ln 12$ is an under-estimate of the true value of $\int_{1}^{4} \ln x dx$
(b)	Use a graph of $y = \ln x$ to show that $\ln 12$ is an under-estimate of the true value of $\int_{1}^{4} \ln x dx$

5	The	poly	nomial	p	(x)	is	defined	bv

$$p(x) = 2x^3 + ax^2 - 3x - 4,$$

where a is a constant. It is given that (x-4) is a factor of p(x).

Find the value of a and hence factorise $p(x)$.	[4]

	 			•••••			
•••••	 ••••••	•••••	••••••	•••••	••••••	•	
	 		•••••	•••••			
••••••	 ••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••••	••••••	
	 			•••••			
	 			•••••			
•••••	 ••••••	•	••••••	•••••	•		
	 			•••••			
			•				
•••••	 •••••		•••••	•••••			
••••••	 ••••••		••••••	•••••			
••••••	 •••••	•••••	••••••	•••••	•••••		
	 			•••••			
••••••	 ••••••	•••••	••••••	•••••		•••••	
	 					•••••	

The diagram shows the curve $y = 3e^{2x-1}$. The shaded region is bounded by the curve and the lines x = a, x = a + 1 and y = 0, where a is a constant. It is given that the area of the shaded region is 120 square units.

(a)	Show that $a = \frac{1}{2} \ln(80 + e^{2a-1}) - \frac{1}{2}$.	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

(b)	3 significant figures. Give the result of each iteration to 5 significant figures. [3]

The diagram shows the curves $y = \sqrt{2\pi - 2x}$ and $y = \sin^2 x$ for $0 \le x \le \pi$. The shaded region is bounded by the two curves and the line x = 0.

Find the exact area of the shaded region.	[8]

	Give the value of α correct to 2 decimal places.
,	
•	
•	
•	
•	
•	
٠	
,	
•	
•	

•••••	•••••	••••••	•••••	•••••		•••••		
••••••	•••••	••••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	
	•••••		•••••			• • • • • • • • • • • • • • • • • • • •		
••••••	•••••	••••••	••••••			• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •
•••••••	••••••	••••••	••••••	•••••	•••••••	••••••	•••••••	•
•••••						• • • • • • • • • • • • • • • • • • • •		
••••••	•••••	••••••	•••••			• • • • • • • • • • • • • • • • • • • •		
			•••••			•••••		
••••••	•••••	•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	•••••							
••••••	•••••	••••••	•••••	••••••		•••••		
	•••••		••••••	•••••				

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.											
	••										
	••										
	••										
	••										
	••										
	••										
	••										
	••										
	••										

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.