

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/11
Paper 1 Pure Mathen	natics 1 (P1)	Oct	ober/November 2018
			1 hour 45 minutes
Candidates answer or	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

		•••••		••••••	•••••		 ••••
		•••••		•••••••	•••••		 ••••
	•••••	•••••	••••••	••••••	•••••		
		•••••	•••••	•••••			
••••••		••••••		······································	••••••		 ••••
••••••					••••••		 ••••
							 ••••
••••••		•••••	••••••	••••••			 ••••
		•••••					
	•••••	•••••••	•••••	•••••			 ••••
••••••					•••••	••••••	 •••••
					•••••		 ••••
				••••••	•••••		
		•••••	••••••	••••••			 ••••
		•••••					
••••••	•••••	••••••			•••••	••••••	 ••••

constant b	for which t	he line m	eets the	curve.							[4
	•••••	•••••		•••••			•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	•	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •
										•••••	
	•••••	•••••		•••••			• • • • • • • • • • • • • • • • • • • •		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••										•••••	
•••••••	••••••	•••••	•••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•	•••••	••••••	•
							•••••			•••••	• • • • • • • • • • • • • • • • • • • •
••••••		•••••	•••••	••••••	••••••		•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
		•••••					•••••		•••••	•••••	• • • • • • • •
•••••••••	••••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • •
										•••••	
••••••	••••••	•••••		•••••	•••••		•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •
										•••••	
• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	••••••	•••••	••••••		••••••		•••••	• • • • • • •
							•••••			•••••	• • • • • • • • • • • • • • • • • • • •

3

Two points A and B have coordinates (3a, -a) and (-a, 2a) respectively, where a is a positive

(i)	Find the equation of the line through the origin parallel to AB .	
		••••••
		•••••
·••\		
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)		
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	
(ii)	The length of the line AB is $3\frac{1}{3}$ units. Find the value of a .	

(-)	For the case where the series is an arithmetic progression, find the sum of the first 80 terms.	[3
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
i)	For the case where the series is a geometric progression, find the sum to infinity.	[2
i)		[2
i)	For the case where the series is a geometric progression, find the sum to infinity.	[2
i)	For the case where the series is a geometric progression, find the sum to infinity.	[2
	For the case where the series is a geometric progression, find the sum to infinity.	[2
)	For the case where the series is a geometric progression, find the sum to infinity.	[2
i)	For the case where the series is a geometric progression, find the sum to infinity.	[2
)	For the case where the series is a geometric progression, find the sum to infinity.	[2
)	For the case where the series is a geometric progression, find the sum to infinity.	[2
ii)	For the case where the series is a geometric progression, find the sum to infinity.	[2

5 (i) Sho	ow that	the	equation
------	-------	---------	-----	----------

	$\frac{\cos\theta-4}{\sin\theta}-$	$\frac{4\sin\theta}{5\cos\theta-2} =$	= 0	
may be expressed as $9\cos^2\theta$	$-22\cos\theta$ +	4 = 0.		[3]
				 •••••
				 ••••••
				 ••••••
				 •••••
				 •••••

(ii) Hence solve the equation	ion
-------------------------------	-----

	$\cos \theta - 4$	$4 \sin \theta$	- 0		
	$\sin \theta$	$-\frac{4\sin\theta}{5\cos\theta-2} =$	= 0		
for $0^{\circ} \le \theta \le 360^{\circ}$.					[3]
	••••••••	•••••••	••••••	•••••	•••••••••••••••••••••••••••••••••••••••
			•••••	•••••	
	•••••	•••••	•••••	•••••	••••••
			•••••	•••••	
				•••••	
	•••••	•••••	••••••	•••••	••••••••••••
		•••••	•••••		
	•••••	•••••	•••••	•••••	
	•••••	•••••	•••••		

(i)	Find the value of a .	[2
		•••
		•••
		••
		•••
i)	Find the equation of the curve.	 [·
i)	Find the equation of the curve.	[4
i)	Find the equation of the curve.	[4
i)	Find the equation of the curve.	[4
i)	Find the equation of the curve.	[-
i)	Find the equation of the curve.	
i)	Find the equation of the curve.	[4
i)	Find the equation of the curve.	[4
i)	Find the equation of the curve.	[4

		••
		· •
		••
		••
		••
		••
		•
		. .
		. •
		• •
(iii)	Determine, showing all necessary working, the nature of the stationary point. [2]	2]
		••
		••
		••
		•

7

The diagram shows part of the curve with equation $y = k(x^3 - 7x^2 + 12x)$ for some constant k. The curve intersects the line y = x at the origin O and at the point A(2, 2).

(i)	Find the value of k .	[1]
(ii)	Verify that the curve meets the line $y = x$ again when $x = 5$.	[2]

,	ary working, the area of the shaded region.	

8

The diagram shows a solid figure OABCDEF having a horizontal rectangular base OABC with OA = 6 units and AB = 3 units. The vertical edges OF, AD and BE have lengths 6 units, 4 units and 4 units respectively. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are parallel to OA, OC and OF respectively.

(i)	Find \overrightarrow{DF} .	[1]
(ii)	Find the unit vector in the direction of \overrightarrow{EF} .	[3]
		•••••
		•••••
		•••••

ii)	Use a scalar product to find angle <i>EFD</i> .	[4]
		•••••
		••••••

The diagram shows a triangle OAB in which angle ABO is a right angle, angle $AOB = \frac{1}{5}\pi$ radians and $AB = 5$ cm. The arc BC is part of a circle with centre A and meets OA at C . The arc CD is part of a circle with centre O and meets OB at OB . Find the area of the shaded region.

10	10 A curve has equation $y = \frac{1}{2}(4x - 3)^{-1}$. The point A on the curve has coordinates $(1, \frac{1}{2})$.			
	(i) (a)	Find and simplify the equation of the normal through A .	[5]	
			,	
			••••••	
			••••••	
			••••••	
			•••••	
			······································	
			••••••	

(b _i	Find the x -coordinate of the point where this normal meets the curve again.	[3]
		•••••
	point is moving along the curve in such a way that as it passes through A its x -cocreasing at the rate of 0.3 units per second. Find the rate of change of its y -coordinates	
	point is moving along the curve in such a way that as it passes through A its x -coccreasing at the rate of 0.3 units per second. Find the rate of change of its y -coordinates	ate at A .
		ate at A .
		ate at A .

11	(a)	The	one-one function f is defined by $f(x) = (x-3)^2 - 1$ for $x < a$, where a is a constant.
		(i)	State the greatest possible value of a . [1]
		(ii)	It is given that a takes this greatest possible value. State the range of f and find an expression for $f^{-1}(x)$. [3]

(b)	The	function g is defined by $g(x) = (x - 3)^2$ for $x \ge 0$.
	(i)	Show that $gg(2x)$ can be expressed in the form $(2x-3)^4 + b(2x-3)^2 + c$, where b and c are constants to be found. [2]
	(ii)	Hence expand $gg(2x)$ completely, simplifying your answer. [4]

Additional Page

If you use the following fined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.